DOI QR코드

DOI QR Code

Static and dynamic characteristics of silty sand treated with nano-silica and basalt fiber subjected to freeze-thaw cycles

  • Hamid Alizadeh Kakroudi (Department of Civil Engineering, Najafabad Branch, Islamic Azad University) ;
  • Meysam Bayat (Department of Civil Engineering, Najafabad Branch, Islamic Azad University) ;
  • Bahram Nadi (Department of Civil Engineering, Najafabad Branch, Islamic Azad University)
  • Received : 2023.04.19
  • Accepted : 2024.03.30
  • Published : 2024.04.10

Abstract

This study investigates the influence of nano-silica and basalt fiber content, curing duration, and freeze-thaw cycles on the static and dynamic properties of soil specimens. A comprehensive series of tests, including Unconfined Compressive Strength (UCS), static triaxial, and dynamic triaxial tests, were conducted. Additionally, scanning electron microscopy (SEM) analysis was employed to examine the microstructure of treated specimens. Results indicate that a combination of 1% fiber and 10% nano-silica yields optimal soil enhancement. The failure patterns of specimens varied significantly depending on the type of additive. Static triaxial tests revealed a notable reduction in the brittleness index (IB) with the inclusion of basalt fibers. Specimens containing 10% nano-silica and 1% fiber exhibited superior shear strength parameters and UCS. The highest cohesion and friction angle were obtained for treated specimens with 10% nano-silica and 1% fiber, 90 kPa and 37.8°, respectively. Furthermore, an increase in curing time led to a significant increase in UCS values for specimens containing nano-silica. Additionally, the addition of fiber resulted in a decrease in IB, while the addition of nano-silica led to an increase in IB. Increasing nano-silica content in stabilized specimens enhanced shear modulus while decreasing the damping ratio. Freeze-thaw cycles were found to decrease the cohesion of treated specimens based on the results of static triaxial tests. Specimens treated with 10% nano-silica and 1% fiber experienced a reduction in shear modulus and an increase in the damping ratio under freeze-thaw conditions. SEM analysis reveals dense microstructure in nano-silica stabilized specimens, enhanced adhesion of soil particles and fibers, and increased roughness on fiber surfaces.

Keywords

References

  1. Al-Mansob, R.A., Wong, W.F., Alsharef, J.M.A., Jassam, T.M., Ng, J.L., Albrka Ali, S.I. and Yusof, Z.B. Md. (2021), "Unconfined compressive strength characteristic of soft soil mixed with lime and nano alumina", AIP Conference Proceedings 2401. https://doi.org/10.1063/5.0073026. 
  2. Anggraini, V., Asadi, A., Huat, B.B.K. and Nahazanan, H. (2015), "Effects of coir fibers on tensile and compressive strength of lime treated soft soil", Measurement, 59, 372-381. https://doi.org/10.1016/j.measurement.2014.09.059. 
  3. Arora, A., Singh, B. and Kaur, P. (2019), "Performance of nanoparticles in stabilization of soil: A comprehensive review", Materials Today: Proceedings, 17, 124-130. https://doi.org/10.1016/j.matpr.2019.06.409. 
  4. Aryal, S. and Kolay, P.K. (2020), "Long-term durability of ordinary portland cement and polypropylene fibre stabilized Kaolin soil using wetting-drying and freezing-thawing test", Int. J. Geosynthetics Ground Eng., 6(1), 1-15. https://doi.org/10.1007/s40891-020-0191-9. 
  5. Asl, M.T. and Taherabadi, E. (2018), "Modification of silty clay strength in cold region's pavement using glass residue", Cold Reg. Sci. Tech., 154, 11-19. https://doi.org/10.1016/j.coldregions.2018.06.005. 
  6. Bahadori, H., Ghalandarzadeh, A. and Towhata, I. (2008), "Effect of non plastic silt on the anisotropic behavior of sand", Soils Found., 48(4), 531-545. https://doi.org/10.3208/sandf.48.531. 
  7. Bayat, M., Asgari, M.R. and Mousivand, M. (2013), "Effects of cement and lime treatment on geotechnical properties of a low plasticity clay", Proceedins of the International Conference on Civil Engineering Architecture & Urban Sustainable Development, 27-28 November, Tabriz, Iran Effects. 
  8. Bayat, M. (2020a), "Effect of sand fouling on the dynamic properties and volume change of gravel during cyclic loadings", Periodica Polytechnica Civil Eng., https://doi.org/10.3311/PPci.15857. 
  9. Bayat, M. (2020b), "Universal model forms for predicting the dynamic properties of granular soils", Acta Geodynamica et Geomaterialia, 217-227. https://doi.org/10.13168/AGG.2020.0016. 
  10. Bayat, M. (2021), "Shear wave velocity in granular soil considering effects of inherent and stress-induced anisotropy", J. Central South Univ., 28(5), 1476-1492. https://doi.org/10.1007/s11771-021-4711-0. 
  11. Bian, X., Zeng, L., Li, X., Shi, X., Zhou, S. and Li, F. (2021), "Fabric changes induced by super-absorbent polymer on cement-lime stabilized excavated clayey soil", J. Rock Mech. Geotech. Eng., 13(5), 1124-1135. https://doi.org/10.1016/j.jrmge.2021.03.006. 
  12. Boz, A., Sezer, A., Ozdemir, T., Hizal, G.E. and Azdeniz Dolmaci, O. (2018), "Mechanical properties of lime-treated clay reinforced with different types of randomly distributed fibers", Arabian J. Geosci., 11(6). https://doi.org/10.1007/s12517-018-3458-x. 
  13. Bozbey, I., Kelesoglu, M.K., Demir, B., Komut, M., Comez, S., Ozturk, T., Mert, A., Ocal, K. and Oztoprak, S. (2018), "Effects of soil pulverization level on resilient modulus and freeze and thaw resistance of a lime stabilized clay", Cold Reg. Sci. Tech., 151, 323-334. https://doi.org/10.1016/j.coldregions.2018.03.023. 
  14. Cao, Z., Ma, Q. and Wang, H. (2019), "Effect of basalt fiber addition on static-dynamic mechanical behaviors and microstructure of stabilized soil compositing cement and fly ash", Adv. Civil Eng., 2019. https://doi.org/10.1155/2019/8214534. 
  15. Chaduvula, U., Desai, A.K. and Solanki, C.H. (2014), "Application of triangular polypropylene fibres on soil subjected to freeze-thaw cycles", Indian Geotech. J., 44(3), 351-256. https://doi.org/10.1007/s40098-013-0088-9. 
  16. Chen, S., Hou, X., Luo, T., Yu, Y. and Jin, L. (2022), Effects of MgO nanoparticles on dynamic shear modulus of loess subjected to freeze-thaw cycles", J. Mater. Res. Tech., 18, 5019-5031. https://doi.org/10.1016/j.jmrt.2022.05.013. 
  17. Cheng, S., Wang, Q., Wang, J. and Han, Y. (2021), "Experimental study on undrained shear properties of saline soil under freeze-thaw cycles", Geofluids, 2021. https://doi.org/10.1155/2021/9987414. 
  18. Chittoori, B.C.S., Puppala, A.J. and Pedarla, A. (2018), "Addressing clay mineralogy effects on performance of chemically stabilized expansive soils subjected to seasonal wetting and drying", J. Geotech. Geoenviron. Eng., 144(1), 04017097. https://doi.org/10.1061/(asce)gt.1943-5606.0001796. 
  19. Choobbasti, A.J., Samakoosh, M.A. and Kutanaei, S.S. (2019), "Mechanical properties soil stabilized with nano calcium carbonate and reinforced with carpet waste fibers", Constr. Build. Mater., 211, 1094-1104. https://doi.org/10.1016/j.conbuildmat.2019.03.306. 
  20. Consoli, N.C., Heineck, K.S., Casagrande, M.D.T. and Coop, M.R. (2007), "Shear strength behavior of fiber-reinforced sand considering triaxial tests under distinct stress paths", J. Geotech. Geoenviron. Eng., 133(11), 1466-1469. https://doi.org/10.1061/(asce)1090-0241(2007)133:11(1466). 
  21. Du, H. and Pang, S.D. (2020), "High-performance concrete incorporating calcined kaolin clay and limestone as cement substitute", Constr. Build. Mater., 264. https://doi.org/10.1016/j.conbuildmat.2020.120152. 
  22. Eshaghzadeh, M., Bayat, M., Ajalloeian, R. and Hejazi, S.M. (2021), "Mechanical behavior of silty sand reinforced with nanosilica-coated ceramic fibers", J. Adhesion Sci. Tech., 35(23), 2664-2683. https://doi.org/10.1080/01694243.2021.1898857. 
  23. Estabragh, A.R., Ranjbari, S. and Javadi, A.A. (2017), "Properties of clay soil and soil cement reinforced with polypropylene fibers", ACI Mater. J., 114(2). 
  24. Gao, L., Luo, Y., Ren, Z., Yu, X. and Wu, K. (2020), "Experimental study on dynamic properties of Nano-MgO-modified silty clay", Int. J. Geosynth. Ground Eng., 6(2). https://doi.org/10.1007/s40891-020-00210-5. 
  25. Ghadir, P. and Ranjbar, N. (2018), "Clayey soil stabilization using geopolymer and Portland cement", Constr. Build. Mater., 188, 361-371. https://doi.org/10.1016/j.conbuildmat.2018.07.207. 
  26. Ghanbari, M. and Bayat, M. (2022), "Effectiveness of reusing steel slag powder and polypropylene fiber on the enhanced mechanical characteristics of cement-stabilized sand", Civil Eng. Infrastruct. J., 1-19. https://doi.org/10.22059/CEIJ.2021.319310.1742. 
  27. Gullu, H. and Khudir, A. (2014), "Effect of freeze-thaw cycles on unconfined compressive strength of fine-grained soil treated with jute fiber, steel fiber and lime", Cold Regions Sci. Tech., 106-107, 55-65. https://doi.org/10.1016/j.coldregions.2014.06.008. 
  28. Hadi Sahlabadi, S., Bayat, M., Mousivand, M. and Saadat, M. (2021), "Freeze-thaw durability of cement-stabilized soil reinforced with polypropylene/basalt fibers", J. Mater. Civil Eng., 33(9), 04021232. https://doi.org/10.1061/(asce)mt.1943-5533.0003905. 
  29. Heidarizadeh, Y., Lajevardi, S.H., Sharifipour, M. and Kamalian, M. (2021), "EExperimental characterization of the small strain shear modulus of soft clay stabilized with cement and nano-SiO2 using bender element tests", Bull. Eng. Geol. Environ., 80(3), 2523-2534. https://doi.org/10.1007/s10064-020-02096-z. 
  30. Irina, K. and Timo, K. (2014), "The effect of carbon fibers, glass fibers and nanoclay on wood flour-polypropylene composite properties", Eur. J. Wood Wood Products, 72(1), 73-79. https://doi.org/10.1007/s00107-013-0754-8. 
  31. Jahandari, S., Li, J., Saberian, M. and Shahsavarigoughari, M. (2017), "Experimental study of the effects of geogrids on elasticity modulus, brittleness, strength, and stress-strain behavior of lime stabilized kaolinitic clay", Geo. Res. J., 13, 49-58. https://doi.org/10.1016/j.grj.2017.02.001. 
  32. Jassem, S. and Tabarsa, A. (2015), "Effect of adding nanoclay on the mechanical behaviour of fine-grained soil reinforced with polypropylene fibers", J. Struct. Eng. Geotechnics, 5(2), 59-67. 
  33. Jiang, P., Chen, Y., Wang, W., Yang, J., Wang, H., Li, N. and Wang, W. (2022), "Flexural behavior evaluation and energy dissipation mechanisms of modified iron tailings powder incorporating cement and fibers subjected to freeze-thaw cycles", J. Cleaner Product., 351, 131527. https://doi.org/10.1016/j.jclepro.2022.131527. 
  34. Jiang, P., Zhou, L., Zhang, W., Wang, W. and Li, N. (2022), "Unconfined compressive strength and splitting tensile strength of lime soil modified by nano clay and polypropylene fiber", Crystals, 12(2), 285. https://doi.org/10.3390/cryst12020285. 
  35. Kalhor, A., Ghazavi, M., Roustaei, M. and Mirhosseini, S.M. (2019), "Influence of nano-SiO 2 on geotechnical properties of fine soils subjected to freeze-thaw cycles", Cold Reg. Sci. Tech., 161, 129-136. https://doi.org/10.1016/j.coldregions.2019.03.011. 
  36. Kaniraj, S.R. and Havanagi,V.G. (2001), "Behavior of cement-stabilized fiber-reinforced fly ash-soil mixtures", J. Geotech. Geoenviron. Eng., 127(7), 574-584. https://doi.org/10.1016/10.1061/(asce)10900241(2001)127:7(574). 
  37. Kulanthaivel, P., Soundara, B., Velmurugan, S. and Naveenraj, V. (2021), "Experimental investigation on stabilization of clay soil using nano-materials and white cement", Mater. Today: Proceedings, 45, 507-511. https://doi.org/10.1016/j.matpr.2020.02.107. 
  38. Li, H. and Senetakis, K. (2017), "Dynamic properties of polypropylene fibre-reinforced silica quarry sand", Soil Dyn. Earthq. Eng., 100, 224-232. https://doi.org/10.1016/j.soildyn.2017.05.035. 
  39. Liu, J., Bai, Y., Song, Z., Kanungo, D.P., Wang, Y., Bu, F., Chen, Z. and Shi, X. (2020), "Stabilization of sand using different types of short fibers and organic polymer", Constr. Build. Mater., 253, 119164. https://doi.org/10.1016/j.conbuildmat.2020.119164. 
  40. Liu, Y., Chang, C.W., Namdar, A., She, Y., Lin, C.H., Yuan, X. and Yang, Q. (2019), "Stabilization of expansive soil using cementing material from rice husk ash and calcium carbide residue", Constr. Build. Mater., 221, 1-11. https://doi.org/10.1016/j.conbuildmat.2019.05.157. 
  41. Lv, Q., Chang, C., Zhao, B. and Ma, B. (2018), "Loess soil stabilization by means of SiO2 nanoparticles", Soil Mech. Found. Eng., 54(6), 409-413. https://doi.org/10.1007/s11204-018-9488-2. 
  42. Momeni, M., Bayat, M. and Ajalloeian, R. (2022), "Laboratory investigation on the effects of pH-induced changes on geotechnical characteristics of clay soil", Geomech. Geoeng., 17(1), 188-196. https://doi.org/10.1080/17486025.2020.1716084. 
  43. Narani, S.S., Zare, P., Abbaspour, M., Fahimifar, A., Siddiqua, S. and Hosseini. S.M.M.M. (2021), "Evaluation of fiber-reinforced and cement-stabilized rammed-earth composite under cyclic loading", Constr. Build. Mater., 296, 123746. https://doi.org/10.1016/j.conbuildmat.2021.123746. 
  44. Olgun, M. (2013), "Effects of polypropylene fiber inclusion on the strength and volume change characteristics of cement-fly ash stabilized clay soil", Geosynthetics Int., 20(4), 263-275. https://doi.org/10.1680/gein.13.00016. 
  45. Orakoglu, M.E., Liu, J. and Niu, F. (2017), "Dynamic behavior of fiber-reinforced soil under freeze-thaw cycles", Soil Dynam. Earthq. Eng., 101, 269-284. https://doi.org/10.1016/j.soildyn.2017.07.022. 
  46. Phanikumar, B.R. and Ramanjaneya Raju, E. (2020), "Compaction and strength characteristics of an expansive clay stabilised with lime sludge and cement", Soils Found., 60(1), 129-138. doi: https://doi.org/10.1016/j.sandf.2020.01.007. 
  47. Pongsivasathit, S., Horpibulsuk, S. and Piyaphipat, S. (2019), "Assessment of mechanical properties of cement stabilized soils", Case Studies Constr. Mater., 11, e00301. https://doi.org/10.1016/j.cscm.2019.e00301. 
  48. Pu, S., Zhu, Z. and Huo, W. (2021), "Evaluation of engineering properties and environmental effect of recycled gypsum stabilized soil in geotechnical engineering: A comprehensive review", Resour. Conserv. Recy., 174, 105780.
  49. Qi, J., Ma, W. and Song, C. (2008), "Influence of freeze-thaw on engineering properties of a silty soil", Cold Reg. Sci. Tech., 53(3), 397-404. https://doi.org/10.1016/j.coldregions.2007.05.010. 
  50. Michalowski, R.L. and Cermak, J. (2005), "Triaxial compression of sand reinforced with fibers", J. Geotech. Geoenviron. Eng., 131(January), 210-213. 
  51. Rezaei-Hosseinabadi, M.J., Bayat, M., Nadi, B. and Rahimi, A. (2022), "Utilisation of steel slag as a granular column to enhance the lateral load capacity of soil", Geomech. Geoeng., 17(5), 1406-1416. https://doi.org/10.1080/17486025.2021.1940315. 
  52. Roustaei, M., Hendry, M., Ali Aghaei, E. and Bayat, M. (2021), "Shear modulus and damping ratio of clay soil under repeated freeze-thaw cycles", Acta Geodynamica et Geomaterialia 18(1), 71-81. https://doi.org/10.13168/AGG.2021.0005. 
  53. Salehi, M., Bayat, M., Saadat, M. and Nasri, M. (2022), "PPrediction of unconfined compressive strength and California bearing capacity of cement-or lime-pozzolan-stabilised soil admixed with crushed stone waste", Geomech. Geoeng., 18(4), 272-283. https://doi.org/10.1080/17486025.2022.2040606. 
  54. ShahriarKian, M.R., Kabiri, S. and Bayat, M. (2021), "Utilization of zeolite to improve the behavior of cement-stabilized soil", Int. J. Geosynthetics Ground Eng., 7(2), 35. https://doi.org/10.1007/s40891-021-00284-9. 
  55. Sharma, K. and Kumar, A. (2021), "Influence of rice husk ash, lime and cement on compaction and strength properties of copper slag", Transport.Geotechnics, 27, 100464. https://doi.org/10.1016/j.trgeo.2020.100464. 
  56. Shibi, T. and Kamei, T. (2014), "Effect of freeze-thaw cycles on the strength and physical properties of cement-stabilised soil containing recycled bassanite and coal ash", Cold Reg. Sci. Tech., 106-107, 36-45. https://doi.org/10.1016/j.coldregions.2014.06.005. 
  57. Shokrieh, M.M., Saeedi, A. and Chitsazzadeh, M. (2013), "Mechanical properties of multi-walled carbon nanotube/polyester nanocomposites", J. Nanostruct. Chem., 3(1). https://doi.org/10.1186/2193-8865-3-20. 
  58. Sukmak, P., Kunchariyakun, K., Sukmak, G., Horpibulsuk, S., Kassawat, S. and Arulrajah, A. (2019), "Strength and microstructure of palm oil fuel ash-fly ash-soft soil geopolymer masonry units", J. Mater. Civil Eng., 31(8), 04019164. https://doi.org/10.1061/(asce)mt.1943-5533.0002809. 
  59. Tang, C., Shi, B., Gao, W., Chen, F. and Cai, Y. (2007), "Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil", Geotext. Geomembranes, 25(3), 194-202. https://doi.org/10.1016/j.geotexmem.2006.11.002. 
  60. Thomas, G. and Rangaswamy, K. (2020), "Dynamic soil properties of nanoparticles and bioenzyme treated soft clay", Soil Dyn. Earthq. Eng., 137. https://doi.org/10.1016/j.soildyn.2020.106324. 
  61. Tomar, A., Sharma, T. and Singh, S. (2019), "Strength properties and durability of clay soil treated with mixture of nano silica and polypropylene fiber", Materials Today: Proceedings, 26, 3449-3457. https://doi.org/10.1016/j.matpr.2019.12.239. 
  62. Wang, T., Liu, Y., Yan, H. and Xu, L. (2015), "An experimental study on the mechanical properties of silty soils under repeated freeze-thaw cycles", Cold Reg. Sci. Tech., 112, 51-65. https://doi.org/10.1016/j.coldregions.2015.01.004. 
  63. Wang, X., Wu, Y., Lu, Y., Cui, J., Wang, X. and Zhu, C. (2021), "Strength and dilatancy of coral sand in the South China Sea", Bull. Eng. Geol. Environ., 80(10), 8279-8299. https://doi.org/10.1007/s10064-021-02348-6. 
  64. Yilmaz, Y. and Ozaydin, V. (2013), "Compaction and shear strength characteristics of colemanite ore waste modified active belite cement stabilized high plasticity soils", Eng. Geol., 155, 45-53. https://doi.org/10.1016/j.enggeo.2013.01.003. 
  65. Yousefi, A., Aliaghaei, E., Kalhor, A., Jahanian, H. and Azadi, M. (2022), "The effect of freeze and thaw cycles on the dynamic properties of fine-grained soil Stabilized with nanocement", Int. J. Geotech. Eng., 16(10), 1221-1233. https://doi.org/10.1080/19386362.2022.2106678. 
  66. Zhang, X., Gu, X., Lu, J. and Zhu, Z. (2016), "Experiment and simulation of creep performance of basalt fibre asphalt mortar under uniaxial compressive loadings", J. Southeast Univ., (English Edition), 32(4), 472-478. https://doi.org/10.3969/j.issn.1003-7985.2016.04.013.