• Title/Summary/Keyword: unconfined

Search Result 738, Processing Time 0.025 seconds

Laboratory analysis of loose sand mixed with construction waste material in deep soil mixing

  • Alnunu, Mahdi Z.;Nalbantoglu, Zalihe
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.559-571
    • /
    • 2022
  • Deep soil mixing, DSM technique has been widely used to improve the engineering properties of problematic soils. Due to growing urbanization and the industrial developments, disposal of brick dust poses a big problem and causes environmental problems. This study aims to use brick dust in DSM application in order to minimize the waste in brick industry and to evaluate its effect on the improvement of the geotechnical properties. Three different percentages of cement content: (10, 15 and 20%) were used in the formation of soil-cement mixture. Unlike the other studies in the literature, various percentages of waste brick dust: (10, 20 and 30%) were used as partial replacement of cement in soil-cement mixture. The results indicated that addition of waste brick dust into soil-cement mixture had positive effect on the inherent strength and stiffness of loose sand. Cement replaced by 20% of brick dust gave the best results and reduced the final setting time of cement and resulted in an increase in unconfined compressive strength, modulus of elasticity and resilient modulus of sand mixed with cement and brick dust. The findings were also supported by the microscopic images of the specimens with different percentages of waste brick dust and it was observed that waste brick dust caused an increase in the interlocking between the particles and resulted in an increase in soil strength. Using waste brick dust as a replacement material seems to be promising for improving the geotechnical properties of loose sand.

Experimental study on modified low liquid limit silt for abutment backfill in bridge-embankment transition section

  • Shu-jian Wang;Yong Sun;Zhen-bao Li;Kai Xiao;Wei Cui
    • Geomechanics and Engineering
    • /
    • v.32 no.6
    • /
    • pp.601-613
    • /
    • 2023
  • Low liquid limit silt, widely distributed in the middle and down reaches of Yellow River, has the disadvantages of poor grading, less clay content and poor colloidal activity. It is very easy to cause vehicle jumping at the bridge-embankment transition section when the low liquid limit silt used as the backfill at the abutment back. In this paper, a series of laboratory tests were carried out to study the physical and mechanical properties of the low liquid limit silt used as back filling. Ground granulated blast furnace slag (GGBFS) was excited by active MgO and hydrated lime to solidify silt as abutment backfill. The optimum ratio of firming agent and the compaction and mechanical properties of reinforced soil were revealed through compaction test and unconfined compressive strength (UCS) test. Scanning electron microscope (SEM) test was used to study the pore characteristics and hydration products of reinforced soil. 6% hydrated lime and alkali activated slag were used to solidify silt and fill the model of subgrade respectively. The pavement settlement regulation and soil internal stress-strain regulation of subgrade with different materials under uniformly distributed load were studied by model experiment. The effect of alkali activated slag curing agent on curing silt was verified. The research results can provide technical support for highway construction in silt area of the Yellow River alluvial plain.

Study on the rainwater recharge model using the groundwater variation and numerical solution of quasi-three dimensional two-phase groundwater flow

  • Tsutsumi, Atsushi;Jinno, Kenji;Mori, Makito;Momii, Kazuro
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2002.05b
    • /
    • pp.1034-1040
    • /
    • 2002
  • A rainwater recharge model, which is combined with the quasi-three dimensional unconfined groundwater flow, is proposed in the present paper. The water budget in the catchments of the planned new campus of Kyushu University is evaluated by the present method that calculates both the surface runoff and groundwater flow simultaneously. The results obtained in the present study reveal that the calculated monthly and annual runoff discharges agree reasonably well with the observed discharge. Combining the rainwater recharge model, the two-phase groundwater flow equation is numerically solved f3r the entire area including the low land where the salt water intrusion is observed. The calculated depth of the salt-fresh interface agrees reasonably well with the observed ones at several cross sections. On the other hand, however, it is found that the calculated water budget remains uncertain because of lack of information on the accurate potential evapotranspiration including rainfall interception. In conclusion, however, it is found that the proposed method is applicable for the areas where the horizontal flow is dominant and the interface is assumed to be sharp.

  • PDF

Engineering Characteristics of Stabilized Bed Sediment (안정처리된 하상토의 공학적 특성)

  • Kim, Jin-Man;Kim, Kyung-Min;Choi, Bong-Hyuck;Kim, Hak-Sam;Han, Sang-Hyun;Lee, Dae-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.101-112
    • /
    • 2007
  • This paper presents the results of an investigation on the ways of utilizing bed sediment as levee materials by laboratory tests. A series of laboratory tests were performed to asses the improved engineering characteristics of bed sediment using admixture cement and weathered granite soils. In this study, several tests such as the grain size analysis test, direct shear test, permeability test, unconfined compression test were peformed. The results of the analyses indicated that the treated bed sediment with cement and weathered granite soils can have the adaptability to the fill material for levee.

Creep Deformation Characteristics of Weathered Granite Soil (화강풍화토의 creep 변형특성)

  • Park, Heung-Gyu;Kim, Yong-Ha;Paeng, Woo-Seon;Lee, Hae-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.12
    • /
    • pp.43-52
    • /
    • 2007
  • This study analyzes the characteristics of creep deformation behavior of weathered granite soils used in road embankments. The creep strain under the unconfined compressive state demonstrated an excellent agreement with the theoretical analysis of the burgers substance. The elastic deformation showed a termination in its characteristics after a long-term period owing to the increase in applied loads. The primary creep strain was 0.0028 and concluded that the deformation completed within $3{\sim}5$ days after applying the loads. Also, the completing time of creep deformation in the embankment soils increased in proportion to the height of embankment soils. The secondary creep strain is about 50% of the primary creep strain.

Compressive and tensile strength behaviors of sand reinforced with fibers and natural Para rubber

  • Sommart Swasdi;Arsit Iyaruk;Panu Promputtangkoon;Arun, Lukjan
    • Geomechanics and Engineering
    • /
    • v.32 no.4
    • /
    • pp.361-373
    • /
    • 2023
  • This study aimed to investigate the engineering properties and mechanical behaviors of polymer-fibers treated sand. Para rubber (PR), natural fiber (NF), and geosynthetic fiber (GF) were used to reinforce poorly graded sand. A series of unconfined compressive and splitting tensile strength tests were performed to analyze the engineering behaviors and strength enhancement mechanism. The experiment results indicated that the PR-fibers mixture could firmly enhance the strength properties of sand. The stress-strain characteristics and failure patterns have been changed due to the increase of PR and fibers content. The presence of PR and fibers strengthened the sand and enhanced the stiffness and ductility behavior of the mixture. The stiffness of reinforced sand reaches an optimum state when both NF and GF are 0.5%, while the optimum PR contents are 20% and 22.5% for the mixture with NF and GF, respectively. An addition of PR and fiber into sand contributed to increasing interlocking zone and bonding of PR-sand interfacial.

Effects of unconfined blast on strategic structures and its protective measures

  • Choubey, Bishwajeet;Dutta, Sekhar C.;Hussain, Md. Ahsaan
    • Structural Engineering and Mechanics
    • /
    • v.84 no.2
    • /
    • pp.167-180
    • /
    • 2022
  • A strategic structure when exposed to direct hit of conventional bomb/projectile are severely damaged because of large amounts of energy released by the impact and penetration of bomb. When massive concrete slabs suffer a direct hit, the energy released during impact and penetration process are able to easily break up large mass of concrete. When over stressed under such impact of bombs, the concrete structure fails showing brittle behavioural nature. This paper is intended to study and suggest the protective measures for structures used for strategic application by adopting a means to dissipate the large quantum of energy released. To quantitatively evaluate the force, displacement and energy in such scenario, a fine numerical model of the proposed layered structure of different combinations was built in ANSYS programme in which tri-nitrotoluene (TNT) explosive was detonated at penetration depth calculated for GP1000 Lbs bomb. The distinct blast mitigation effect of the proposed structure was demonstrated by adopting various layers/barriers created as protective measures for the strategic structure. The calculated result shows that the blast effect on the structure is potentially reduced due to provision of buster slab with sand cushioning provided as protective measure to the main structure. This concept of layered protective measures may be adopted for safeguarding strategic structures such as Domes, Tunnels and Underground Structures.

Polynomial model controlling the physical properties of a gypsum-sand mixture (GSM)

  • Seunghwan Seo;Moonkyung Chung
    • Geomechanics and Engineering
    • /
    • v.35 no.4
    • /
    • pp.425-436
    • /
    • 2023
  • An effective tool for researching actual problems in geotechnical and mining engineering is to conduct physical modeling tests using similar materials. A reliable geometric scaled model test requires selecting similar materials and conducting tests to determine physical properties such as the mixing ratio of the mixed materials. In this paper, a method is proposed to determine similar materials that can reproduce target properties using a polynomial model based on experimental results on modeling materials using a gypsum-sand mixture (GSM) to simulate rocks. To that end, a database is prepared using the unconfined compressive strength, elastic modulus, and density of 459 GSM samples as output parameters and the weight ratio of the mixing materials as input parameters. Further, a model that can predict the physical properties of the GSM using this database and a polynomial approach is proposed. The performance of the developed method is evaluated by comparing the predicted and observed values; the results demonstrate that the proposed polynomial model can predict the physical properties of the GSM with high accuracy. Sensitivity analysis results indicated that the gypsum-water ratio significantly affects the prediction of the physical properties of the GSM. The proposed polynomial model is used as a powerful tool to simplify the process of determining similar materials for rocks and conduct highly reliable experiments in a physical modeling test.

Effect of Xanthan gum biopolymer combined with fibre as soil- stabilization binder of dune sand in Southern Algeria

  • Benathmane Baghdir;Younes Abed;Sadok Feia;Sidali Denine;Turgay Beyaz;Achref Cherifi
    • Geomechanics and Engineering
    • /
    • v.39 no.2
    • /
    • pp.115-127
    • /
    • 2024
  • Biopolymer treatment of geomaterials is a promising technology with green technology potential that can help reduce global warming. It offers a positive environmental impact and a wide range of applications. This paper reports the results of a study of the mechanical performance of biopolymer-treated dune-sand from the Algeria desert. The sand was mixed with varying amounts of xanthan gum biopolymer and reinforced with polypropylene fibre. The study demonstrated that xanthan gum treatment improved the Unconfined Compressive Strength (UCS) of unreinforced sand and fibre-reinforced sand. Nonetheless, the test results revealed that biopolymer-treated sand manifested higher resistance after drying. Based on the findings, the optimal quantity of xanthan gum for treating sand is 2%. The incorporation of fibre in the matrix increases the strength and failure strain. The Scanning Electron Microscopy (SEM) analysis further substantiated that the biopolymer bonds the sand particles together and the distribution of PP fibre in the mixture, thereby enhancing compressive strength and durability. The results indicate that using xanthan gum biopolymer treatment offers an environmentally friendly approach to enhancing the mechanical properties of desert sand.

Engineering Properties of Fly Ash-WFS Mixed Materials as a Flow able Backfill (유동성 뒷채움재로 사용하기 위한 플라이에쉬-폐주물사 혼합재료의 특성 연구)

  • 이관호;이인모;조재윤;윤여준
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.489-496
    • /
    • 1999
  • The objective of this study is to present engineering properties required in use of co-mixtures of fly ash and WFS(Waste Foundry Sand)'s, which are Presently used as fill or (lovable backfill. The fly ash, generated at the Tae-An thermoelectric power plant was used in this research and was classified as Class F. Green Sand, Furane Sand, and Coated Sand, which had been used at a foundry located in Pusan, were used. Laboratory experiments were peformed to obtain the physical properties of the co-mixture of fly ash and WFS. The range of permeability for all the co-mixtures was from 3.0×10/sup -3/㎝/s to 6.0×10/sup -5/㎝/s. The unconfined strength of the 7-day cured specimens composed of Green Sand reached 94% of that of 28-day cured specimens but for the 7-day cured specimens composed of, respectively, Furnace Sand and Coated Sand, only 64% and 66% of the strength of the 28-day cured specimens were reached. Results of the consolidated-untrained triaxial test showed that the specimens composed of Furnace Sand showed a distinct increase of the internal friction angle, while the other specimens showed negligible increase. In the case of 28-day cured specimens, specimens composed of Furnace Sand showed an internal friction angle of 41.8°, while specimens of Green and Coated Sand showed those of 33.5° and 35.0°, respectively. From the shrinkage test, the shrinkage ratios of all specimens did not exceed 0.25%.

  • PDF