DOI QR코드

DOI QR Code

Effect of Xanthan gum biopolymer combined with fibre as soil- stabilization binder of dune sand in Southern Algeria

  • Benathmane Baghdir (NEIGE Laboratory, Civil Engineering Department, Saad Dahleb university) ;
  • Younes Abed (NEIGE Laboratory, Civil Engineering Department, Saad Dahleb university) ;
  • Sadok Feia (Research Laboratory of Civil Engineering, Civil Engineering Department, Biskra University) ;
  • Sidali Denine (Civil Engineering Department, Center University of Tipaza) ;
  • Turgay Beyaz (Department of Geological Engineering, School of Engineering, Pamukkale University) ;
  • Achref Cherifi (Industrial Technology Research Center, Additive Manufacturing Research Unit)
  • Received : 2023.12.22
  • Accepted : 2024.09.30
  • Published : 2024.10.25

Abstract

Biopolymer treatment of geomaterials is a promising technology with green technology potential that can help reduce global warming. It offers a positive environmental impact and a wide range of applications. This paper reports the results of a study of the mechanical performance of biopolymer-treated dune-sand from the Algeria desert. The sand was mixed with varying amounts of xanthan gum biopolymer and reinforced with polypropylene fibre. The study demonstrated that xanthan gum treatment improved the Unconfined Compressive Strength (UCS) of unreinforced sand and fibre-reinforced sand. Nonetheless, the test results revealed that biopolymer-treated sand manifested higher resistance after drying. Based on the findings, the optimal quantity of xanthan gum for treating sand is 2%. The incorporation of fibre in the matrix increases the strength and failure strain. The Scanning Electron Microscopy (SEM) analysis further substantiated that the biopolymer bonds the sand particles together and the distribution of PP fibre in the mixture, thereby enhancing compressive strength and durability. The results indicate that using xanthan gum biopolymer treatment offers an environmentally friendly approach to enhancing the mechanical properties of desert sand.

Keywords

Acknowledgement

The authors would like to express their gratitude to the directorate general for scientific research and technological development (DGRSDT) for supporting this research. They also wish to acknowledge the invaluable assistance of the staff at the Soil Mechanics Laboratory in Mohamed Khider university, and thank Pr. Kamil Kayabali from Ankara university for his efforts and guidance throughout the research.

References

  1. Anagnostopoulos, C.A., Papaliangas, T.T., Konstantinidis, D. and Patronis, C. (2013), "Shear strength of sands reinforced with polypropylene fibers", Geotech. Geol. Eng., 31(2), 401-423. https://doi.org/10.1007/s10706-012-9593-3.
  2. Ayeldeen, M., Negm, A., El-sawwaf, M. and Kitazume, M. (2016), "Enhancing the behavior of collapsible soil using biopolymers", J. Rock Mech. Geotech. Eng., https://doi.org/10.1016/j.jrmge.2016.11.007
  3. Bagheri, P., Gratchev, I. and Rybachuk, M. (2023), "Effects of Xanthan gum biopolymer on soil mechanical properties", Appl. Sci. (Switzerland), 13(2). https://doi.org/10.3390/app13020887.
  4. Becker, A., Katzen, F., Puhler, A. and Ielpi, L. (1998), "Xanthan gum biosynthesis and application: A biochemical/genetic perspective", Appl. Microbiol. Biotech., 50(2), 145-152. https://doi.org/10.1007/s002530051269.
  5. Bouazza, A., Gates, W.P. and Ranjith, P.G. (2009), "Hydraulic conductivity of biopolymer-treated silty sand", Geotechnique, 59(1), 71-72. https://doi.org/10.1680/geot.2007.00137.
  6. Boukeffoussa, A., Noureddine, E., Missoum, M., Samir, B., Sidali, B. and Sert, S. (2023), "A laboratory study on shear behavior of biocemented chlef sandy soil", Transport. Infrastruct. Geotech., 0123456789. https://doi.org/10.1007/s40515-023-00303-4.
  7. Chang, I. (2010), "Biopolymer treated Korean residual soil - geotechnical behavior and applications", Ph.D. Thesis.
  8. Chang, I., Im, J. and Cho, G. (2016), "Geotechnical engineering behaviors of gellan gum biopolymer treated sand", https://doi.org/10.1139/cgj-2015-0475.
  9. Chang, I., Im, J., Prasidhi, A.K. and Cho, G.C. (2015), "Effects of Xanthan gum biopolymer on soil strengthening", Constr. Build. Mater., 74, 65-72. https://doi.org/10.1016/j.conbuildmat.2014.10.026.
  10. Chang, I., Lee, M., Tran, A.T.P., Lee, S., Kwon, Y.M., Im, J. and Cho, G.C. (2020), "Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices", Transport. Geotech., 24, 100385. https://doi.org/10.1016/j.trgeo.2020.100385.
  11. Chen, C., Wei, K., Gu, J., Huang, X., Dai, X. and Liu, Q. (2022), Combined Effect of Biopolymer and Fiber Inclusions on Unconfined Compressive Strength of Soft Soil.
  12. Cho, G., Chang, I. and Im, J. (2021), Microbial Biopolymers as an Alternative Construction Binder (Issue May). https://doi.org/10.1007/978-981-16-0045-6.
  13. Cho, I.C.G. (2019), "Shear strength behavior and parameters of microbial gellan gum- treated soils : from sand to clay", Acta Geotechnica, 14(2), 361-375. https://doi.org/10.1007/s11440-018-0641-x.
  14. Dehghan, H., Tabarsa, A., Latifi, N. and Bagheri, Y. (2019), "Use of xanthan and guar gums in soil strengthening", Clean Technol. Environ. Policy, 21(1), 155-165. https://doi.org/10.1007/s10098-018-1625-0.
  15. Feng, D., Liang, B., He, X., Yi, F., Xue, J., Wan, Y. and Xue, Q. (2023), "Mechanical properties of dredged soil reinforced by xanthan gum and fibers", J. Rock Mech. Geotech. Eng., 15(8), 2147-2157. https://doi.org/10.1016/j.jrmge.2023.02.010.
  16. Garcia-Ochoa, F., Santos, V.E., Casas, J.A. and Gomez, E. (2000), "Xanthan gum: Production, recovery, and properties", Biotechnol. Adv., 18(7), 549-579. https://doi.org/10.1016/S0734-9750(00)00050-1.
  17. Khatami, H.R. and O'Kelly, B.C. (2013), "Improving mechanical properties of sand using biopolymers", J. Geotech. Geoenviron. Eng., 139(8), 1402-1406. https://doi.org/10.1061/(asce)gt.1943-5606.0000861.
  18. Kwon, Y.M., Chang, I., Lee, M. and Cho, G.C. (2019), "Geotechnical engineering behavior of biopolymer-treated soft marine soil", Geomech. Eng., 17(5), 453-464. https://doi.org/10.12989/gae.2019.17.5.453.
  19. Lee, M., Kwon, Y.M., Park, D.Y., Chang, I. and Cho, G.C. (2022), "Durability and strength degradation of xanthan gum based biopolymer treated soil subjected to severe weathering cycles", Scientific Reports, 1-16. https://doi.org/10.1038/s41598-022-23823-4
  20. Lee, S., Chang, I. and Chung, M. (2017), "Direct shear testing Geotechnical shear behavior of Xanthan Gum biopolymer treated sand from direct shear testing", Geomech. Eng., 12(5), 831-847. https://doi.org/10.12989/gae.2017.12.5.831.
  21. Lee, S., Chung, M., Park, H. M., Song, K.I. and Chang, I. (2019), "Xanthan Gum biopolymer as soil-stabilization binder for road construction using local soil in Sri Lanka", J. Mater. Civil Eng., 31(11), 06019012. https://doi.org/10.1061/(asce)mt.1943-5533.0002909
  22. Lee, S., Im, J., Cho, G.C. and Chang, I. (2019a), "Laboratory triaxial test behavior of xanthan gum biopolymer-treated sands", Geomech. Eng., 17(5), 445-452. https://doi.org/10.12989/gae.2019.17.5.445.
  23. Li, L., Li, M., Ogbonnaya, U., Wen, K., Xu, Y. and Amini, F. (2017), "Study of a discrete randomly distributed fiber on the tensile strength improvement of microbial-induced soil stabilization", Geotech. Front., 12-18. https://doi.org/10.1061/9780784480472.002
  24. Liu, D.Y. and Lyu, M.Z. (2023), "Evaluating uncertainty in particle roughness of coated sand and its implication to coating abrasion", Powder Technology, 430(August), 118966. https://doi.org/10.1016/j.powtec.2023.118966
  25. Liu, D.Y., Wang, C. and Lyu, M.Z. (2024), "Elucidating the complexity of stress interactions in polymer-coated granular materials via copula-based probabilistic dependence configurations", Powder Technology, 435(January), 119405. https://doi.org/10.1016/j.powtec.2024.119405.
  26. Ma, K., Liu, J., Jiang, C. Ma, X., Huang, L., He, C. and Qi, C. (2022), "Compressive and tensile strength of polymer-based fiber composite sand", J. Central South Univ., 29(2), 528-545. https://doi.org/10.1007/s11771-022-4909-9.
  27. Ma, Q. (2023), Enhance the mechanical properties of the berreinforced sandy soil using xanthan gum.
  28. Qureshi, M.U., Chang, I. andAl-sadarani, K. (2017), "Strength and durability characteristics of biopolymer-treated desert sand", Geomech. Eng., 12(5), 785-801. https://doi.org/10.12989/gae.2017.12.5.785.
  29. Soldo, A., Miletic, M. and Auad, M.L. (2020), "Biopolymers as a sustainable solution for the enhancement of soil mechanical properties", Scientific Reports, 1-14. https://doi.org/10.1038/s41598-019-57135-x.
  30. Soldo, A., Miletic, M. and Vidal, V.A. (2021), "Macroscopic stress-strain response and strain localization behavior of biopolymer-treated soil", Polymers, 14(5), 997. https://doi.org/10.3390/polym14050997.
  31. Sujatha, E.R. (2021), "Enhancing the geotechnical properties of soil using xanthan gum - an eco-friendly alternative to traditional stabilizers", Bull. Eng. Geol. Environ. 80, 1157-1167. https://doi.org/10.1007/s10064-020-02010-7.
  32. Taytak, B., Pulat, H. and Yukselen-Aksoy, Y. (2012), "Improvement of engineering properties of soils by biopolymer additives", Proceedings of the 3rd International Conference on New Developments in Soil Mechanics and Geotechnical Engineering, June, 28-30.
  33. Wang, L., Weng, Z., Liu, Q., Wang, T., Pan, X., Li, G. and Wang, Z. (2021), "Improving the mechanical properties of red clay using Xanthan gum biopolymer", Int. J. Polymer Sci., https://doi.org/10.1155/2021/1535772.
  34. Zhang, J., Meng, Z., Jiang, T., Wang, S., Zhao, J. and Zhao, X. (2022), "Applied sciences experimental study on the shear strength of silt treated by Xanthan gum during the Wetting process", Appl. Sci., 12(12), 6053. https://doi.org/10.3390/app12126053