• 제목/요약/키워드: uncertainty of estimation

검색결과 750건 처리시간 0.029초

Quantitative Analysis of Trace pp'-DDE in Corn Oil by Isotope Dilution Mass Spectrometry : Uncertainty Evaluations

  • 김병주;김달호;최종오;소헌영
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권8호
    • /
    • pp.910-916
    • /
    • 1999
  • A current interest in chemistry concerns traceability of analytical measurements to the International System of Units (SI) and the proper estimation of their uncertainties in accordance with the internationally agreed guide provided by the International Organization for Standardization (ISO). Isotope dilution mass spectrometry (IDMS) is regarded as a primary method, which make the measurement results traceable to SI units without significant empirical correction factors. Our laboratory, as the national standards institute of Korea, participated in an intercomparison of environmental analysis, pp'-DDE in corn oil, which was organized by the CCQM under supervision of the CIPM to test feasibility of IDMS as a primary method for the trace analysis of organic compounds. In this report, we provide basic equations used for the calculation of the concentration of the analyte in a sample and a precise description of the processes for the evaluation of the uncertainties of the measurement results. Also, we report the experimental conditions adopted to improve the accuracy of the IDMS measurement. The principles contained in ??Guide to the Expression of Uncertainty in Measurement'' provided by ISO are followed for the uncertainty evaluation.

지반성질 불확실성을 고려한 사면안정 해석 (Assessment of Slope Stability With the Uncertainty in Soil Property Characterization)

  • 김진만
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.123-130
    • /
    • 2003
  • The estimation of key soil properties and subsequent quantitative assessment of the associated uncertainties has always been an important issue in geotechnical engineering. It is well recognized that soil properties vary spatially as a result of depositional and post-depositional processes. The stochastic nature of spatially varying soil properties can be treated as a random field. A practical statistical approach that can be used to systematically model various sources of uncertainty is presented in the context of reliability analysis of slope stability Newly developed expressions for probabilistic characterization of soil properties incorporate sampling and measurement errors, as well as spatial variability and its reduced variance due to spatial averaging. Reliability analyses of the probability of slope failure using the different statistical representations of soil properties show that the incorporation of spatial correlation and conditional simulation leads to significantly lower probability of failure than obtained using simple random variable approach.

  • PDF

Stochastic design charts for bearing capacity of strip footings

  • Shahin, Mohamed A.;Cheung, Eric M.
    • Geomechanics and Engineering
    • /
    • 제3권2호
    • /
    • pp.153-167
    • /
    • 2011
  • Traditional design methods of bearing capacity of shallow foundations are deterministic in the sense that they do not explicitly consider the inherent uncertainty associated with the factors affecting bearing capacity. To account for such uncertainty, available deterministic methods rather employ a fixed global factor of safety that may lead to inappropriate bearing capacity predictions. An alternative stochastic approach is essential to provide a more rational estimation of bearing capacity. In this paper, the likely distribution of predicted bearing capacity of strip footings subjected to vertical loads is obtained using a stochastic approach based on the Monte Carlo simulation. The approach accounts for the uncertainty associated with the soil shear strength parameters: cohesion, c, and friction angle, ${\phi}$, and the cross correlation between c and ${\phi}$. A set of stochastic design charts that assure target reliability levels of 90% and 95%, are developed for routine use by practitioners. The charts negate the need for a factor of safety and provide a more reliable indication of what the actual bearing capacity might be.

음향 신호를 이용한 수중로봇의 위치추정 (Localization of an Underwater Robot Using Acoustic Signal)

  • 김태균;고낙용
    • 로봇학회논문지
    • /
    • 제7권4호
    • /
    • pp.231-242
    • /
    • 2012
  • This paper proposes particle filter(PF) method using acoustic signal for localization of an underwater robot. The method uses time of arrival(TOA) or time difference of arrival(TDOA) of acoustic signals from beacons whose locations are known. An experiment in towing tank uses TOA information. Simulation uses TDOA information and it reveals dependency of the localization performance on the uncertainty of robot motion and senor data. Also, comparison of the PF method with the least squares method of spherical interpolation(SI) and spherical intersection(SX) is provided. Since PF uses TOA or TDOA which comes from measurement of external information as well as internal motion information, its estimation is more accurate and robust to the sensor and motion uncertainty than the least squares methods.

Nonlinearity-Compensation Extended Kalman Filter for Handling Unexpected Measurement Uncertainty in Process Tomography

  • Kim, Jeong-Hoon;Ijaz, Umer Zeeshan;Kim, Bong-Seok;Kim, Min-Chan;Kim, Sin;Kim, Kyung-Youn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1897-1902
    • /
    • 2005
  • The objective of this paper is to estimate the concentration distribution in flow field inside the pipeline based on electrical impedance tomography. Special emphasis is given to the development of dynamic imaging technique for two-phase field undergoing a rapid transient change. Nonlinearity-compensation extended Kalman filter is employed to cope with unexpected measurement uncertainty. The nonlinearity-compensation extended Kalman filter compensates for the influence of measurement uncertainty and solves the instability of extended Kalman filter. Extensive computer simulations are carried out to show that nonlinearity-compensation extended Kalman filter has enhanced estimation performance especially in the unexpected measurement environment.

  • PDF

불확실성이 있는 로봇 시스템의 역모델 학습에 의한 신경회로망 제어 (Neural network control by learning the inverse dynamics of uncertain robotic systems)

  • 김성우;이주장
    • 제어로봇시스템학회논문지
    • /
    • 제1권2호
    • /
    • pp.88-93
    • /
    • 1995
  • This paper presents a study using neural networks in the design of the tracking controller of robotic systems. Our strategy is to put to use the available knowledge about the robot manipulator, such as estimation models, in the contoller design via the computed torque method, and then to add the neural network to control the remaining uncertainty. The neural network used here learns to provide the inverse dynamics of the plant uncertainty, and acts as an inverse controller. In the simulation study, we verify that the proposed neural network controller is robust not only to structured uncertainties, but also to unstructured uncertainties such as friction models.

  • PDF

A Probabilistic Approach to Quantifying Uncertainties in the In-vessel Steam Explosion During Severe Accidents at a Nuclear Power Plant

  • Mun, Ju-Hyun;Kang, Chang-Sun;Park, Gun-Chul
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1995년도 추계학술발표회논문집(2)
    • /
    • pp.509-516
    • /
    • 1995
  • The uncertainty analysis for the in-vessel steam explosion during severe accidents at a nuclear power plant is performed using a probabilistic approach. This approach consists of four steps; 1) screening, 2) quantification of uncertainty 3) propagation of uncertainty, and 4) output analysis. And the specific methods which satisfy the sub-objectives of each step are prepared and presented. Compared with existing ones, the unique feature of this approach is the improved estimation of uncertainties through quantification, which ensures the defensibility of the resultant failure probability distributions. Using the approach, the containment failure probability due to in-vessel steam explosion is calculated. The results of analysis show that 1) pour diameter is the most dominant factor and slug condensed phase fraction is the least and 2) fraction of core molten is the second most dominant factor, which is identified as distinct feature of this study as compared with previous studies.

  • PDF

수자원 영향평가를 위한 기후변화 시나리오의 불확실성 평가 (Uncertainties estimation of AOGCM-based climate scenarios for impact assessment on water resources)

  • 박이형;임은순;권원태;이은정
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회 논문집
    • /
    • pp.138-142
    • /
    • 2005
  • The change of precipitation and temperature due to the global. warming eventually caused the variation of water availability in terms of potential evapotranspiration, soil moisture, and runoff. In this reason national long-term water resource planning should be considered the effect of climate change. Study of AOGCM-based scenario to proposed the plausible future states of the climate system has become increasingly important for hydrological impact assessment. Future climate changes over East Asia are projected from the coupled atmosphere-ocean general circulation model (AOGCM) simulations based on Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 and B2 scenarios using multi-model ensembles (MMEs) method (Min et al. 2004). MME method is used to reduce the uncertainty of individual models. However, the uncertainty increases are larger over the small area than the large area. It is demonstrated that the temperature increases is larger over continental area than oceanic area in the 21st century.

  • PDF

한국표준과학연구원의 실하중 토크 표준기 (2 kNm Deadweight Torque Standard Machine in KRISS)

  • 김민석;박연규;김종호;강대임
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.656-659
    • /
    • 2004
  • As the demand for traceable calibrations of torque measuring devices has considerably increased both in the production sector and in research institutes, suitable standard machines had to be developed at the Korea Research Institute of Standards and Science. Owing to its special design, the small uncertainty of measurement required for the realization of the static torque can be reached (relative uncertainty of measurement < 5$\times$10$^{-5}$ in the measurement range between 500 and 2000 Nm, and < 1$\times$10$^{-4}$ in the measurement range from 10 to 500 Nm). The relative discrepancy between our torque calibration results of 2 kNm and PTB s (Physikalisch Technische Bundesanstalt, Germany) results was less than 2$\times$10$^{-5}$ , which confirming our uncertainty estimation.

  • PDF

Automated data interpretation for practical bridge identification

  • Zhang, J.;Moon, F.L.;Sato, T.
    • Structural Engineering and Mechanics
    • /
    • 제46권3호
    • /
    • pp.433-445
    • /
    • 2013
  • Vibration-based structural identification has become an important tool for structural health monitoring and safety evaluation. However, various kinds of uncertainties (e.g., observation noise) involved in the field test data obstruct automation system identification for accurate and fast structural safety evaluation. A practical way including a data preprocessing procedure and a vector backward auto-regressive (VBAR) method has been investigated for practical bridge identification. The data preprocessing procedure serves to improve the data quality, which consists of multi-level uncertainty mitigation techniques. The VBAR method provides a determinative way to automatically distinguish structural modes from extraneous modes arising from uncertainty. Ambient test data of a cantilever beam is investigated to demonstrate how the proposed method automatically interprets vibration data for structural modal estimation. Especially, structural identification of a truss bridge using field test data is also performed to study the effectiveness of the proposed method for real bridge identification.