• Title/Summary/Keyword: uncertainty navigation

Search Result 131, Processing Time 0.033 seconds

AIS Implementation and Experiment with the Korean Satellite

  • Lee Han-Jin;Lee Changmin;Kang Chang-Gu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.08a
    • /
    • pp.119-123
    • /
    • 2000
  • In this paper, authors introduce about Wide Range Vessel Traffic Service (VTS) system using Automatic Identification System (AIS). In order to develop the prototype of Wide Range VIS system, Korean satellite is used for data communication system for AIS. In this system, ship position obtained by using GPS is reported automatically to VTS center through Korean satellite. By using this system, VTS center can cover more wide area than the case using radar only. And the uncertainty of information is decrease. The results of test show the good possibility of VTS using satellite and AIS.

  • PDF

Analyzing Characteristics of GPS Dual-frequency SPP Techniques by Introducing the L2C Signal

  • Seonghyeon Yun;Hungkyu Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.2
    • /
    • pp.157-166
    • /
    • 2023
  • Several experiments were carried out to analyze the impact of the modernized Global Positioning System (GPS) L2C signal on pseudorange-based point positioning. Three dual-frequency positioning algorithms, ionosphere-free linear combination, ionospheric error estimation, and simple integration, were used, and the results were compared with those of Standard Point Positioning (SPP). An analysis was conducted to determine the characteristics of each dual-frequency positioning method, the impact of the magnitude of ionospheric error, and receiver grade. Ionosphere-free and ionospheric error estimation methods can provide improved positioning accuracy relative to SPP because they are able to significantly reduce the ionospheric error. However, this result was possible only when the ionospheric error reduction effect was greater than the disadvantage of these dual-frequency positioning algorithms such as the increment of multipath and noise, impact of uncertainty of unknown parameter estimation. The RMSE of the simple integration algorithm was larger than that of SPP, because of the remaining ionospheric error. Even though the receiver grade was different, similar results were observed.

Intelligent Decision Support Algorithm for Uncertain Inventory Management

  • Le Ngoc Bao Long;Sam-Sang You;Truong Ngoc Cuong;Hwan-Seong Kim
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.254-255
    • /
    • 2023
  • This paper discovers a robust managerial strategy for a stochastic inventory of perishable products, where the model experiences changing factors including inner parameters and an external disturbance with unknown form. An analytical solution for the optimization problem can be obtained by applying the Hamilton-Bellman-Jacobi equation, however the policy result cannot completely suppress the oscillation from the external disturbance. Therefore, an intelligent approach named Radial Basis Function Neural Networks is applied to estimate the unknown disturbance and provide a robust controller to manipulate the inventory level more effective. The final results show the outstanding performance of RBFNN controller, where both the estimation error and control error are guaranteed in the predefined limit.

  • PDF

Robust Analysis for Configuration of Redundant Intertial Sensors

  • Yang, Cheol-Kwan;Kim, Jeong-Yong;Shim, Duk-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.116.4-116
    • /
    • 2001
  • We consider a robust configuration problem of inertial sensors for inertial navigation system(INS). Fault detection and isolation(FDI) is necessary to improve reliability of the system. For FDI, there used to be more than three mutually orthogonal sensors and thus we have to consider configuration methods of sensors. Various studies in this area have been done, but the former results did not consider effect of uncertainty(misalignment, scale factor error) to determine the configuration of the sensors. In this paper robust configuration of sensors is proposed through sensitivity analysis. Also total least square(TLS) method ...

  • PDF

A Study on Construction of Aids to Navigation Big Data Based on S-201

  • Kim, Yunjee;Oh, Se-woong;Jeon, Minsu
    • Journal of Navigation and Port Research
    • /
    • v.46 no.5
    • /
    • pp.409-417
    • /
    • 2022
  • The International Association of Lighthouse Authorities (IALA) utilizes a questionnaire to investigate the status of Aids to Navigation (AtoN) around the world. However, results of the IALA questionnaire have limited use because respondent understanding is inconsistent. In addition, there is uncertainty regarding the appropriateness of the questionnaire content. Furthermore, the overall response rate is low. Therefore, the status of AtoN is not clearly understood. AtoN data from around the world are generated hourly. Thus, big data solutions are required to effectively exploit the information. Digitization of analog data is an important component of building big data. Hence, the IALA has developed a Maritime Resource Name (MRN) scheme and an information exchange standard. Here, we used the AtoN information exchange standard and designed an S-201-based big data construction process that could collect and manage global AtoN information. In this study, construction of an IALA AtoN portal was proposed as the core of the construction of the AtoN big data. The process was divided into three stages. IALA AtoN portal is developed by IALA with the goal to provide various meaningful statistical analysis results based on AtoN data while managing AtoN information around the world based on S-201. If an AtoN portal capable of constructing S-201-based big data is developed, then a data collection and storage system that can gather basic S-201 AtoN data from the IALA and global AtoN management agencies could be achieved. Furthermore, insightful statistical analysis of AtoN status worldwide and changes in manufacturing technology will be possible.

Localization on an Underwater Robot Using Monte Carlo Localization Algorithm (몬테카를로 위치추정 알고리즘을 이용한 수중로봇의 위치추정)

  • Kim, Tae-Gyun;Ko, Nak-Yong;Noh, Sung-Woo;Lee, Young-Pil
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.2
    • /
    • pp.288-295
    • /
    • 2011
  • The paper proposes a localization method of an underwater robot using Monte Carlo Localization(MCL) approach. Localization is one of the fundamental basics for autonomous navigation of an underwater robot. The proposed method resolves the problem of accumulation of position error which is fatal to dead reckoning method. It deals with uncertainty of the robot motion and uncertainty of sensor data in probabilistic approach. Especially, it can model the nonlinear motion transition and non Gaussian probabilistic sensor characteristics. In the paper, motion model is described using Euler angles to utilize the MCL algorithm for position estimation of an underwater robot. Motion model and sensor model are implemented and the performance of the proposed method is verified through simulation.

On the Adjustment of Weight of Multiple Decision Making Group Problems (다수 의사결정 그룹 문제의 가중치 조정에 관한 연구)

  • Yeo Ki-Tae;Ryu Hyung-Geun;Lee Hong-Girl
    • Journal of Navigation and Port Research
    • /
    • v.29 no.1 s.97
    • /
    • pp.59-64
    • /
    • 2005
  • MDMG(Multiple Decision-Making Group) problems comprise those of UDMG(Unit Decision-Making Group) which contradict each other. For the evaluation problem of port competitiveness, it has the complicated evaluation characteristics of multi-strata-complex and multi-attributes. Especially, it becomes typical MDMG problems in the evaluation which a great number of decision makers such as shipping companies, freight forwarders, logistics companies and researchers participate in This evaluation of complex problems needs the compensated process of weight which rationally unites heterogeneous preferences of each of groups. In this respect, the purpose of this study is to remove the uncertainty of the UDMG using the theory of DS (Dempster-Shafer) and present the integrated weight through the level process.

A Effect of Unreliable Default Parameter in Forecasting Delay and Level of Service of Signalized Intersection (초기변수의 불확실성이 신호교차로 지체모형 및 서비스수준 예측에 미치는 영향 분석)

  • Kim, Sung-Deuk;Park, Won-Kyu;Kim, Kyung-Kyu
    • Journal of Navigation and Port Research
    • /
    • v.27 no.4
    • /
    • pp.471-478
    • /
    • 2003
  • In the Signalized Intersection, the capacity analysis is conducted with a large amount of input data such as road way, traffic and signal condition. but the level of service(LOS) is determined by delay estimated as a measure of effectiveness (MOE) based on this procedure. However, It is under the circumstances which are not considered for the errors caused by the uncertainty of input data in the field(the turing volumes, lane geometry, signal timing, grade of approach lane, percentage heavy vehicles, peak hour factor and arrival type etc.) as become the bases in the determination of the capacity and LOS. It includes the problem of reliability which is not verified for the capacity and LOS estimated. So, this study is to suggest the minimization of their influences by examining whether the uncertainty of input data such as the traffic volume, percentage of heavy vehicles and roadway geometry on the approach lane in the intersection under the study affects the capacity analysis and LOS determination.

Robust Berth Planning under Uncertain Vessel Arrival (선박 도착시간의 불확실성에 강건한 선석 계획)

  • Park, Hyun-Ji;Park, Jin-Hyoung;Cho, Sung-Won
    • Journal of Navigation and Port Research
    • /
    • v.45 no.3
    • /
    • pp.102-108
    • /
    • 2021
  • The purpose of this study is to develop a proactive methodology for disruption due to uncertainty in vessels' arrival time. As worldwide imports and exports increased rapidly, the importance of berth planning in container terminals has increased accordingly. Since the berth plan determines the capacity of the container terminal, it aims to maximize efficiency by minimizing the time and space gap between the vessels. In reality, several uncertainties disrupt the initial berth plan resulting in economic losses. In this study, we propose a robust berth plan for preventing disruption.

Attitude Estimation of Unmanned Vehicles Using Unscented Kalman Filter (무향 칼만 필터를 이용한 무인 운송체의 자세 추정)

  • Song, Gyeong-Sub;Ko, Nak-Yong;Choi, Hyun-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.265-274
    • /
    • 2019
  • The paper describes an application of unscented Kalman filter(UKF) for attitude estimation of an unmanned vehicle(UV), which is equipped with a low-cost attitude heading reference system (AHRS). The roll, pitch and yaw required at the correction stage of the UKF are calculated from the measurements of acceleration and geomagnetic field. The roll and pitch are attributed to the measurement of acceleration, while yaw is calculated from the geomagnetic field measurement. Since the measurement of geomagnetic field is vulnerable to distortion by hard-iron and soft-iron effects, the calculated yaw has more uncertainty than the calculated roll and pitch. To reduce the uncertainty of geomagnetic field measurement, the proposed method estimates bias in the geomagnetic field measurement and compensates for the bias for more accurate calculation of yaw. The proposed method is verified through navigation experiments of a UV in a test pool. The results show that the proposed method yields more accurate attitude estimation; thus, it results more accurate location estimation.