• Title/Summary/Keyword: uncertainty measurement

Search Result 936, Processing Time 0.032 seconds

A Study of Contact Resistance Test Considered with Measurement Uncertainty for Electric Bus Couplers with Battery-Swapping System (측정불확도를 고려한 배터리 교환형 전기버스용 접속기 접촉저항 평가에 관한 연구)

  • Kim, Kwang-Min;Lee, Ju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.10
    • /
    • pp.60-64
    • /
    • 2015
  • Many people think that Electric Vehicles(EVs) is the best method to resolve the problems of running out of fossil fuels. But EVs take long time for charging. So, EVs with battery swapping systems(EVBS) are developed to resolve this problem. Nonetheless, EVBS is not spreaded widely because the method of durability test in couplers is not defined. In this study, the evaluation method of durability test in couplers is defined by some standards and the measurement uncertainty is used to increase the reliability of EV couplers.

Comparison of ISO-GUM and Monte Carlo Method for Evaluation of Measurement Uncertainty (몬테카를로 방법과 ISO-GUM 방법의 불확도 평가 결과 비교)

  • Ha, Young-Cheol;Her, Jae-Young;Lee, Seung-Jun;Lee, Kang-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.7
    • /
    • pp.647-656
    • /
    • 2014
  • To supplement the ISO-GUM method for the evaluation of measurement uncertainty, a simulation program using the Monte Carlo method (MCM) was developed, and the MCM and GUM methods were compared. The results are as follows: (1) Even under a non-normal probability distribution of the measurand, MCM provides an accurate coverage interval; (2) Even if a probability distribution that emerged from combining a few non-normal distributions looks as normal, there are cases in which the actual distribution is not normal and the non-normality can be determined by the probability distribution of the combined variance; and (3) If type-A standard uncertainties are involved in the evaluation of measurement uncertainty, GUM generally offers an under-valued coverage interval. However, this problem can be solved by the Bayesian evaluation of type-A standard uncertainty. In this case, the effective degree of freedom for the combined variance is not required in the evaluation of expanded uncertainty, and the appropriate coverage factor for 95% level of confidence was determined to be 1.96.

Measurement uncertainty evaluation in FaroArm-machine using the bootstrap method

  • Horinov, Sherzod;Shaymardanov, Khurshid;Tadjiyev, Zafar
    • Journal of Multimedia Information System
    • /
    • v.2 no.3
    • /
    • pp.255-262
    • /
    • 2015
  • The modern manufacturing systems and technologies produce products that are more accurate day by day. This can be reached mainly by improvement the manufacturing process with at the same time restricting more and more the quality specifications and reducing the uncertainty in part. The main objective an industry becomes to lower the part's variability, since the less variability - the better is product. One of the part of this task is measuring the object's uncertainty. The main purpose of this study is to understand the application of bootstrap method for uncertainty evaluation. Bootstrap method is a collection of sample re-use techniques designed to estimate standard errors and confidence intervals. In the case study a surface of an automobile engine block - (Top view side) is measured by Coordinate Measuring Machine (CMM) and analyzed for uncertainty using Geometric Least Squares in complex with bootstrap method. The designed experiment is composed by three similar measurements (the same features in unique reference system), but with different points (5, 10, 20) concentration at each level. Then each cloud of points was independently analyzed by means of non-linear Least Squares, after estimated results have been reported. A MatLAB software tool used to generate new samples using bootstrap function. The results of the designed experiment are summarized and show that the bootstrap method provides the possibility to evaluate the uncertainty without repeating the Coordinate Measuring Machine (CMM) measurements many times, i.e. potentially can reduce the measuring time.

Uncertainty Analysis of Dynamic Thermal Rating of Overhead Transmission Line

  • Zhou, Xing;Wang, Yanling;Zhou, Xiaofeng;Tao, Weihua;Niu, Zhiqiang;Qu, Ailing
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.331-343
    • /
    • 2019
  • Dynamic thermal rating of the overhead transmission lines is affected by many uncertain factors. The ambient temperature, wind speed and wind direction are the main sources of uncertainty. Measurement uncertainty is an important parameter to evaluate the reliability of measurement results. This paper presents the uncertainty analysis based on Monte Carlo. On the basis of establishing the mathematical model and setting the probability density function of the input parameter value, the probability density function of the output value is determined by probability distribution random sampling. Through the calculation and analysis of the transient thermal balance equation and the steady- state thermal balance equation, the steady-state current carrying capacity, the transient current carrying capacity, the standard uncertainty and the probability distribution of the minimum and maximum values of the conductor under 95% confidence interval are obtained. The simulation results indicate that Monte Carlo method can decrease the computational complexity, speed up the calculation, and increase the validity and reliability of the uncertainty evaluation.

Design of Simple Direct Comparison Measurement System from 10 MHz to 1 GHz for Thermistor Mounts Calibration (서미스터 마운트 교정을 위한 10 MHz에서 1 GHz 주파수 대역의 단순 직접 비교 측정시스템 설계)

  • Cha, Yun-Bae;Jang, Young-Guen;Kim, Boo-Il
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.405-412
    • /
    • 2020
  • The thermistor mount is used for precise RF power measurement because the calibration factor is constant according to the change of power. The calibration factor of the standard mount can be measured with an uncertainty less than 0.5 % from the 10 MHz to 1 GHz by direct comparison with the transfer standard using the DC substitution method. Recently, as the supply of precision power meter based on DC substitution method allows simple and fast measurement, a simple direct comparison measurement system with the same level uncertainty was designed and the minimum required specifications of components through analysis of mismatch error was proposed. The uncertainty was evaluated for system validation, and the results show that uncertainties have been well maintained within 0.5 % in the measurement frequencies.

Uncertainty assessment of industrial platinum resistance thermometers for different lead-wire connection methods (산업용 백금저항온도센서의 결선방식에 따른 측정불확도 평가방법)

  • Kim, Yong-Gyoo;Gam, Kee-Sool;Yang, In-Seok
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.322-326
    • /
    • 2009
  • To estimate the measurement uncertainty for industrial platinum resistance thermometers(IPRTs) made with 3-wire connection, the immersion temperature profile was investigated using a liquid bath. Two types of IPRTs having lead wires made of silver and nickel were constructed and the immersion profiles were measured at temperatures from -50 $^{\circ}C$ to 250 $^{\circ}C$ using 3-wire and 4-wire method. As immersion depth and temperature increased, the resistances measured by 3-wire method increased linearly but not for 4-wire method. To calibrate a 3-wire IPRT, the immersion effect must be accounted for. We propose a linear equation to assess correctly the measurement uncertainty.

Intercomparison of Light Oil Flow Standard System for the Reliability of Measurement Accuracy (경질유 유량표준장치의 신뢰도 검증을 위한 측정정확도 비교)

  • Lim, Ki-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.9
    • /
    • pp.712-719
    • /
    • 2008
  • Light Oil Flow Standard System(LOFSS), as a national oil flow standard system, in Korea Research Institute of Standards and Science(KRISS) was developed for oil flowmeter calibration, and the expanded uncertainty of flow quantity determination was estimated within 0.04 %. In order to improve the reliability of the LOFSS measurement, a proficiency test was carried out in the flow range of 20 and $240\;m^3/h$ (Reynolds number $20,000{\sim}900,000$). A turbine flowmeter was used as a transfer package in round robin test. The water flow standard system of KRISS, the pipe prover of the national calibration and test organization and the master meter calibrator of the turbine flowmeter supplier, which used the different working fluid respectively, were compared with the turbine flowmeter measurement. The maximum difference of measurement was 0.15 % between the LOFSS and the pipe prover. The En numbers of the each system measurement were evaluated at the same Reynolds number. It was found that the En numbers were less than 1 in the comparison, which means the procedures of the uncertainty estimation of the each calibrators were reasonable and reliable.

Improved measurement uncertainty of photon detection efficiency for single pixel Silicon photomultiplier

  • Yang, Seul Ki;Lee, Hye-Young;Jeon, Jina;Kim, Sug-Whan;Lee, Jik;Park, Il H.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.210.1-210.1
    • /
    • 2012
  • We report technique used for improved measurement uncertainties for Photon detection efficiency(PDE) of $1mm^2$ single pixel SiPM. It consists of 470nm LED light source, two 2-inch integrating sphere and two NIST calibrated silicon photodiodes that have ${\pm}2.4%$ calibration error. With raytracing simulation of our experimental setup, we predict number of photon into SiPM and measurement uncertainty. For MPPC, Hamamatsu suggested PDE(1600 micro pixel) including crosstalk and afterpulse is 23.5% at 470 nm. By using new low calibration error photodiode and raytracing simulation, our simulation result has ${\pm}3%$ measurement uncertainty. The technical detail of measurement, simulation are presented with the results and implication.

  • PDF

Reliability of Measurement Estimation in Altitude Engine Test (엔진 고도 시험의 측정 신뢰성 평가)

  • Lee, Jin-Kun;Yang, In-Young;Yang, Soo-Seok;Kwak, Jae-Su
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.3
    • /
    • pp.1-6
    • /
    • 2006
  • The altitude engine test is a sort of engine performance tests carried out to measure the performance of a engine at the simulated altitude and flight speed environments prior to that at the flight test. During the performance test of a engine, various values such as pressures and temperatures at different positions, air flow rate, fuel flow rate, and the load by thrust are measured. These measured values are used to derive the representative performance values such as the net thrust and the specific fuel consumption through a momentum equation. Hence each of the measured values has certain effects on the total uncertainty of the performance values. In this paper, the combined standard uncertainties of the performance variables at the engine test were estimated by the uncertainty analysis of the measurement values and the repeatability and reproducibility of the altitude test measurement were assessed by the analysis of variation on the repeated test data with different operator groups.

  • PDF

Assessment of DVC measurement uncertainty on GFRPs with various fiber architectures

  • Bartulovic, Ante;Tomicevic, Zvonimir;Bubalo, Ante;Hild, Francois
    • Coupled systems mechanics
    • /
    • v.11 no.1
    • /
    • pp.15-32
    • /
    • 2022
  • The comprehensive understanding of the fiber reinforced polymer behavior requires the use of advanced non-destructive testing methods due to its heterogeneous microstructure and anisotropic mechanical proprieties. In addition, the material response under load is strongly associated with manufacturing defects (e.g., voids, inclusions, fiber misalignment, debonds, improper cure and delamination). Such imperfections and microstructures induce various damage mechanisms arising at different scales before macrocracks are formed. The origin of damage phenomena can only be fully understood with the access to underlying microstructural features. This makes X-ray Computed Tomography an appropriate imaging tool to capture changes in the bulk of fibrous materials. Moreover, Digital Volume Correlation (DVC) can be used to measure kinematic fields induced by various loading histories. The correlation technique relies on image contrast induced by microstructures. Fibrous composites can be reinforced by different fiber architectures that may lead to poor natural contrast. Hence, a priori analyses need to be performed to assess the corresponding DVC measurement uncertainties. This study aimed to evaluate measurement resolutions of global and regularized DVC for glass fiber reinforced polymers with different fiber architectures. The measurement uncertainties were evaluated with respect to element size and regularization lengths. Even though FE-based DVC could not reach the recommended displacement uncertainty with low spatial resolution, regularized DVC enabled for the use of fine meshes when applying appropriate regularization.