• 제목/요약/키워드: uncertain nonlinear systems

검색결과 254건 처리시간 0.037초

Robust Nonlinear H$\infty$ FIR Filtering for Time-Varying Systems

  • Ryu, Hee-Seob;Son, Won-Kee;Kwon, Oh-Kyu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제2권3호
    • /
    • pp.175-181
    • /
    • 2000
  • This paper investigates the robust nonlinear H$_{\infty}$ filter with FIR(Finite Impulse Response) structure for nonlinear discrete time-varying uncertain systems represented by the state-space model having parameter uncertainty. Firstly, when there is no parameter uncertainty in the system, the discrete-time nominal nonlinear H$_{\infty}$ FIR filter is derived by using the equivalence relationship between the FIR filter and the recursive filter, which corresponds to the standard nonlinear H$_{\infty}$ filter. Secondly, when the system has the parameter uncertainty, the robust nonlinear H$_{\infty}$ FIR filter is proposed for the discrete-time nonlinear uncertain systems.

  • PDF

행렬 부등식 접근법을 이용한 비선형 시스템의 측정 피드백 제어 (Measurement Feedback Control of a Class of Nonlinear Systems via Matrix Inequality Approach)

  • 구민성;최호림
    • 제어로봇시스템학회논문지
    • /
    • 제20권6호
    • /
    • pp.631-634
    • /
    • 2014
  • We propose a measurement state feedback controller for a class of nonlinear systems that have uncertain nonlinearity and sensor noise. The new design method based on the matrix inequality approach solves the measurement feedback control problem of a class of nonlinear systems. As a result, the proposed methods using a matrix inequality approach has the flexibility to apply the controller. In addition, the sensor noise can be attenuated for more generalized systems containing uncertain nonlinearities.

Fuzzy Sliding Mode Control for Uncertain Nonlinear Systems Using Fuzzy Models

  • Seo, Sam-Jun;Kim, Dong-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1262-1266
    • /
    • 2003
  • Fuzzy sliding mode controller for a class of uncertain nonlinear dynamical systems is proposed and analyzed. The controller's construction and its analysis involve sliding modes. The proposed controller consists of two components. Sliding mode component is employed to eliminate the effects of disturbances, while a fuzzy model component equipped with an adaptation mechanism reduces modeling uncertainties by approximating model uncertainties. To demonstrate its performance, the proposed control algorithm is applied to an inverted pendulum. The results show that both alleviation of chattering and performance are achieved.

  • PDF

A Nonlinear Transformation Approach to Adaptive Output Feedback Control of Uncertain Nonlinear Systems

  • Ahn, Choon-Ki;Kim, Beom-Soo;Lim, Myo-Taeg
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.48.1-48
    • /
    • 2001
  • In this paper, we present a global adaptive output feedback control scheme for a class of uncertain nonlinear systems to which adaptive observer backstepping method may not be applicable directly. The allowed output feedback structure includes quadratic and multiplicative dependency of unmeasured states. Our novel design technique employs a change of coordinates and adaptive backstepping. With these proposed tools, we can remove linear and quadratic dependence on the unmeasured states in the state equation. Also, the multiplication of the two unmeasured states can be eliminated ...

  • PDF

Powrer Series를 이용한 불확실성을 갖는 비선형 시스템의 지능형 디지털 재설계 (Intelligent Digital Redesign for Uncertain Nonlinear Systems Using Power Series)

  • 성화창;박진배;고성현;주영훈
    • 한국지능시스템학회논문지
    • /
    • 제15권7호
    • /
    • pp.881-886
    • /
    • 2005
  • 본 논문은 복합 상태 공간에서의 피지 기반 제어기를 이용한 지능형 디지털 재설계의 전 역적 접근 방안에 대해 제안하고자 한다. 이산화를 통한 제어기 설계에 있어서 불확실성이 포함된 실시간 비선형 시스템에 대해 보다 효율적이고 안정적인 접근을 위해 TS 퍼지 모델이 사용되었다. 그리고 전 역적 접근을 위한 방안으로서 문제를 볼록 최적화 관점으로 변환 후, 에러가 가질 수 있는 놈의 영역을 최소화하여 상태 접합을 이루고자 하였다. 또한 power series를 사용함으로써 불확실성이 조합된 비선형 시스템을 보다 더 정확하게 분석하였다. 샘플링 기간이 충분히 작다면, 불확실 비선형 시스템의 실시간 시스템으로의 전환이 충분한 이유를 가지게 된다. 전 역적 접근을 통한 디지털로 제어된 시스템은 선형 행렬 부등식 형태로 바꾸어 시스템의 안정성을 보장하고자 하였다. 마지막으로 TS 퍼지 모델로 분석된 혼돈 Lorenz System에 적용함으로써 제안된 방법의 안정성과 효율성을 보장받게 된다.

Adaptive Fuzzy Sliding Mode Control for Uncertain Nonlinear Systems

  • Seo, Sam-Jun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제11권1호
    • /
    • pp.12-18
    • /
    • 2011
  • This paper deals with a new adaptive fuzzy sliding mode controller and its application to an inverted pendulum. We propose a new method of adaptive fuzzy sliding mode control scheme that the fuzzy logic system is used to approximate the unknown system functions in designing the SMC of uncertain nonlinear systems. The controller's construction and its analysis involve sliding modes. The proposed controller consists of two components. Sliding mode component is employed to eliminate the effects of disturbances, while a fuzzy model component equipped with an adaptation mechanism reduces modeling uncertainties by approximating model uncertainties. To demonstrate its performance, the proposed control algorithm is applied to an inverted pendulum. The results show that both alleviation of chattering and performance are achieved.

구조화된 불확실성이 있는 시스템의 강인한 극배치 제어 (Robust Pole Placement for Structured Uncertain Systems)

  • 이준화
    • 제어로봇시스템학회논문지
    • /
    • 제5권1호
    • /
    • pp.11-15
    • /
    • 1999
  • In this paper, a robust pole placement controller for time invariant linear systems with polytopic uncertainties is presented. The proposed controller is a fixed order output feedback controller which stabilizes the uncertain systems and satisfies the constraints on the closed-loop pole location. The proposed controller can be obtained by minimizing a certain nonlinear object function subject to linear matrix inequality constraints. An algorithm for solving the nonlinear optimization problem is also proposed.

  • PDF

Semi-active bounded optimal control of uncertain nonlinear coupling vehicle system with rotatable inclined supports and MR damper under random road excitation

  • Ying, Z.G.;Yan, G.F.;Ni, Y.Q.
    • Coupled systems mechanics
    • /
    • 제7권6호
    • /
    • pp.707-729
    • /
    • 2018
  • The semi-active optimal vibration control of nonlinear torsion-bar suspension vehicle systems under random road excitations is an important research subject, and the boundedness of MR dampers and the uncertainty of vehicle systems are necessary to consider. In this paper, the differential equations of motion of the coupling torsion-bar suspension vehicle system with MR damper under random road excitation are derived and then transformed into strongly nonlinear stochastic coupling vibration equations. The dynamical programming equation is derived based on the stochastic dynamical programming principle firstly for the nonlinear stochastic system. The semi-active bounded parametric optimal control law is determined by the programming equation and MR damper dynamics. Then for the uncertain nonlinear stochastic system, the minimax dynamical programming equation is derived based on the minimax stochastic dynamical programming principle. The worst-case disturbances and corresponding semi-active bounded parametric optimal control are obtained from the programming equation under the bounded disturbance constraints and MR damper dynamics. The control strategy for the nonlinear stochastic vibration of the uncertain torsion-bar suspension vehicle system is developed. The good effectiveness of the proposed control is illustrated with numerical results. The control performances for the vehicle system with different bounds of MR damper under different vehicle speeds and random road excitations are discussed.

불일치 시스템의 견실제어기 설계 (Robust control for mismatched uncertain system)

  • 김동환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.117-119
    • /
    • 1997
  • We consider the control design for nonlinear uncertain systems. The uncertainty is mismatched and possibly fast time-varying. Within the suitable range of the uncertainty the control is valid. No statistical information on uncertainty is imposed. Only the possible bound of the uncertain parameter is known and the control design is based on Lyapunov approach.

  • PDF

A New Approach to the Design of a Fuzzy Sliding Mode Controller for Uncertain Nonlinear Systems

  • Seo, Sam-Jun;Kim, Dong-Sik;Kim, Dong-Won;Yoo, Ji-Yoon;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.646-651
    • /
    • 2004
  • This paper deals with a new adaptive fuzzy sliding mode controller and its application to an inverted pendulum. We propose new method of adaptive fuzzy sliding mode control scheme that the fuzzy logic system is used to approximate the unknown system functions in designing the SMC of uncertain nonlinear systems. The controller's construction and its analysis involve sliding modes. The proposed controller consists of two components. Sliding mode component is employed to eliminate the effects of disturbances, while a fuzzy model component equipped with an adaptation mechanism reduces modeling uncertainties by approximating model uncertainties. To demonstrate its performance, the proposed control algorithm is applied to an inverted pendulum. The results show that both alleviation of chattering and performance are achieved

  • PDF