• Title/Summary/Keyword: unbounded operators

Search Result 34, Processing Time 0.026 seconds

BOUNDED AND UNBOUNDED OPERATORS SIMILAR TO THEIR ADJOINTS

  • Dehimi, Souheyb;Mortad, Mohammed Hichem
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.215-223
    • /
    • 2017
  • In this paper, we establish results about operators similar to their adjoints. This is carried out in the setting of bounded and also unbounded operators on a Hilbert space. Among the results, we prove that an unbounded closed operator similar to its adjoint, via a cramped unitary operator, is self-adjoint. The proof of this result works also as a new proof of the celebrated result by Berberian on the same problem in the bounded case. Other results on similarity of hyponormal unbounded operators and their self-adjointness are also given, generalizing well known results by Sheth and Williams.

Weak semicontinuity for unbounded operators

  • Kim, Hyoungsoon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.447-457
    • /
    • 1997
  • Let A be a $C^*$-algebra and $A^**$ its enveloping von Neumann algebra. Pedersen and Akemann developed four concepts of lower semicontinuity for elements of $A^**$. Later, Brown suggested using only three classes: strongly lsc, middle lsc, and weakly lsc. In this paper, we generalize the concept of weak semicontinuity [1, 3] to the case of unbounded operators affiliated with $A^**$. Also we consider the generalized version of the conditions of the Brown's theorem [3, Proposition 2.2 & 3.27] for unbounded operators.

  • PDF

ON UNBOUNDED SUBNOMAL OPERATORS

  • Jin, Kyung-Hee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.65-70
    • /
    • 1993
  • In this paper we will extend some notions of bounded linear operators to some unbounded linear operators. Let H be a complex separable Hilbert space and let B(H) denote the algebra of bounded linear operators. A closed densely defind linear operator S in H, with domain domS, is called subnormal if there is a Hilbert space K containing H and a normal operator N in K(i.e., $N^{*}$N=N $N^*/)such that domS .subeq. domN and Sf=Nf for f .mem. domS. we will show that the Radjavi and Rosenthal theorem holds for some unbounded subnormal operators; if $S_{1}$ and $S_{2}$ are unbounded subnormal operators on H with dom $S_{1}$= dom $S^{*}$$_{1}$ and dom $S_{2}$=dom $S^{*}$$_{2}$ and A .mem. B(H) is injective, has dense range and $S_{1}$A .coneq. A $S^{*}$$_{2}$, then $S_{1}$ and $S_{2}$ are normal and $S_{1}$.iden. $S^{*}$$_{2}$.2}$.X>.

  • PDF

IDENTICAL THEOREM OF APPROXIMATION UNBOUNDED FUNCTIONS BY LINEAR OPERATORS

  • ALAA ADNAN AUAD;FAISAL AL-SHARQI
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.4
    • /
    • pp.801-810
    • /
    • 2023
  • The aim of this paper, investigated of weighted space which contained the unbounded functions which is to be approximated by linear operators in terms some Well-known approximation tools such as the modulus of smoothness and K-functional. The characteristics of the identical theorem between modulus of smoothness and K-functional are consider. In addition to the establish the direct, converse and identical theorem by using some linear operators in terms modulus Ditzian-Totik.

CONSTRUCTION OF UNBOUNDED DIRICHLET FOR ON STANDARD FORMS OF VON NEUMANN ALGEBRAS

  • Bahn, Chang-Soo;Ko, Chul-Ki
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.6
    • /
    • pp.931-951
    • /
    • 2002
  • We extend the construction of Dirichlet forms and Markovian semigroups on standard forms of von Neumann algebra given in [13] to the case of unbounded operators satiated with the von Neumann algebra. We then apply our result to give Dirichlet forms associated to the momentum and position operators on quantum mechanical systems.

DECOMPOSITION OF DIRICHLET FORMS ASSOCIATED TO UNBOUNDED DIRICHLET OPERATORS

  • Ko, Chul-Ki
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.2
    • /
    • pp.347-358
    • /
    • 2009
  • In [8], the author decomposed the Dirichlet form associated to a bounded generator G of a $weakly^*$-continuous, completely positive, KMS-symmetric Markovian semigroup on a von Neumann algebra M. The aim of this paper is to extend G to the unbounded generator using the bimodule structure and derivations.

Comparative Analysis of Spectral Theory of Second Order Difference and Differential Operators with Unbounded Odd Coefficient

  • Nyamwala, Fredrick Oluoch;Ambogo, David Otieno;Ngala, Joyce Mukhwana
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.2
    • /
    • pp.297-305
    • /
    • 2020
  • We show that selfadjoint operator extensions of minimal second order difference operators have only discrete spectrum when the odd order coefficient is unbounded but grows or decays according to specific conditions. Selfadjoint operator extensions of minimal differential operator under similar growth and decay conditions on the coefficients have a absolutely continuous spectrum of multiplicity one.

Weyl Type Theorems for Unbounded Hyponormal Operators

  • GUPTA, ANURADHA;MAMTANI, KARUNA
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.3
    • /
    • pp.531-540
    • /
    • 2015
  • If T is an unbounded hyponormal operator on an infinite dimensional complex Hilbert space H with ${\rho}(T){\neq}{\phi}$, then it is shown that T satisfies Weyl's theorem, generalized Weyl's theorem, Browder's theorem and generalized Browder's theorem. The equivalence of generalized Weyl's theorem with generalized Browder's theorem, property (gw) with property (gb) and property (w) with property (b) have also been established. It is also shown that a-Browder's theorem holds for T as well as its adjoint $T^*$.

ONE SIDED APPROXIMATION OF UNBOUNDED FUNCTIONS FOR ALGEBRAIC POLYNOMIAL OPERATORS IN WEIGHTED Lp,α-SPACES

  • HAJR IMAD RAJAA;ALAA ADNAN AUAD
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.4
    • /
    • pp.867-877
    • /
    • 2024
  • The objective of this article is to acquire analogs for the degree of best one-sided approximation to investigate some Jackson's well-known theorems for best one-sided approximations in weighted Lp,α-spaces. In addition, some operators that are used to approximate unbounded functions have been introduced as be algebraic polynomials in the same weighted spaces. Our main results are given in terms of degree of the best one-sided approximation in terms of averaged modulus of smoothness.