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Abstract. The objective of this article is to acquire analogs for the degree
of best one-sided approximation to investigate some Jackson’s well-known

theorems for best one-sided approximations in weighted Lp,α-spaces. In ad-

dition, some operators that are used to approximate unbounded functions
have been introduced as be algebraic polynomials in the same weighted

spaces. Our main results are given in terms of degree of the best one-sided

approximation in terms of averaged modulus of smoothness.
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1. Introduction

The theory of approximation deals with approximating the term complicated
should be used here complex my confuse the reader to the of complex numbers.
Problems concerning one-sided approximation have previously been considered
by the authors [10, 11]. Researchers focus on approximating one-sided functions,
including the better 1-sided approximation of unbounded functions, which is the
subject of this paper.

Denote Sn as set of nth degree algebraic polynomials on [0, 1] with nodes at
given points. i.e., s ∈ Sn if s ∈ Cn−1[0, 1] and s is an algebraic function of degree
n on the interval [xi−1, xi], i = 1, 2, . . . , k. The best one-sided approximation

Ẽn(f)Lp,α
in Lp,α, to the function by algebraic polynomial in Sn on the interval
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[0, 1] given by:

Ẽn (f)Lp,α
= inf

(∫ 1

0

((S (x)− s (x))wα (x))
p
wα (x) dx

) 1
p

: S, s ∈ Sn,

s(x) ≤ f(x) ≤ S(x), x ∈ [0, 1]

In 2008 [14], Oleksanor investigated one-sided weighted approximation by
bounded polynomials in Lp-space on the real line and obtained results. In 2010
[15], Motornyi and Pas’ko examined the best one-sided approximation through
a class of differentiable functions in Lp-space. In 2012 [13], Rensuoli and Yong
studied the better m-term 1-sided multi approximation by trigonometric poly-
nomials on some classes of Besov space in Lp(Td), p ≥ 1. In 2014 [1], Adell et al.
introduced operators for approximating Riemann integrable functions on [0, 1]
using algebraic polynomials in Lp-spaces. In 2019 [5], Auad and Abdulsttar es-
tablish some results of best simultaneous approximation of unbounded functions
in weighted space by given two different definitions and considered the relation
between best simultaneous approximation. In 2021[6] Alaa and Mohamed, con-
structive characterization of modulus of smoothness are considered and the direct
& converse algebraic polynomials approximation theorem in weighted spaces of
unbounded functions in weighted space, finally in 2023 [3, 4] Alaa and etc. inves-
tigated of weighted space which contained the unbounded functions which is to
be approximated by linear operators in terms some Well-known approximation
tools such as the modulus of smoothness and K-functional.

In this paper, the weight function wα (x) = e−a
∏d

i=1 xi ∈ W such that W =
{w | w : [0, 1] → R+} is utilized which is non-negative measurable function on
R+.

2. Basic definitions

Definition 2.1. [12] Let f ∈ Lp,α(X), X = [u, v] such that p ∈ [1,∞), ,
then the weighted space of all real respected unbounded functions f , such that∫ v

u
|f (x)wα (x)|p dx < ∞, α > 0 is defined by:

∥f∥p,α =

[∫ v

u

|f (x)wα (x)|p dx
] 1

p

, x ∈ X. (1)

Definition 2.2. For f ∈ Lp,α(X), X = [a, b], δ > 0, we might know the
following notion:

ω(f ; δ) = sup {|f (t)− f (x)|} , |x− t| ≤ δ,

where x, t belong to the domain of definition of the function f , be the continuity
modulus of f . The Lp,α-modulus of continuity of f is defined as

ω (f, δ)Lp,α
= sup

0<k<δ

(∫ v

u

|(f (x)−f(t))wα (x)|p dx
) 1

p

.
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The kth average modulus of smoothness for f ∈ Lp,α(X) is given by

τn (f, δ) = ∥ωn(f, ., δ)∥Lp,α
,

where,

ωn(f, ., δ)Lp,α
= sup

0<k<δ
{∥∆n

kf(.)∥} , δ > 0,

such that, the kth symmetric difference of f is given by:

∆n
kf (x) =

n∑
i=1

(−1)
n−i

(
n

i

)
f (x+ ik), x, k ∈ X.

The kth order module of smoothness of f is defined by

ωn(f, ., δ)Lp,α
= sup

0<k<δ

(∫ v

u

|∆n
kf (x)wα (x)|p dx

) 1
p

, α > 0.

These moduli of continuity are well studied compared to moduli of variation.

Definition 2.3. [8] The modulus of variation of difference of a mapping f is
the function V (f, δ) with scope the positive integers, clear by

V (f, δ) = sup
πn

k∑
i=1

|f (ui)− f(vi)| ,

where πn is an arbitrary system of n disjoint subintervals (ai, bi) of (0, 1).

Definition 2.4. The degree of best one-sided approximation of f is:

Ẽn(f)p,α = inf︸︷︷︸
pn∈Pn

{
∥pn − qn∥p,α pn(x) ≤ f(x) ≤ qn(x)

}
.

Where Pn is the space of all polynomials of degree n of one-variable. Also, the
degree of best approximation of the function f is given by:

En(f)p,α = inf︸︷︷︸
pn∈Pn

{
∥f − pn∥p,α

}
3. Auxiliary lemmas

In this section various properties of the modulus τ (f ; δ)Lp,α
are offered, which

are named as an auxiliary lemmas.

Lemma 3.1. [2] τ (f ; δ)L∞,α
= ω (f ; δ).

In relationship with this lemma, we see that the situation of uniform approxima-
tion of function fundamentally accords with 1-sided approximation in L∞,α.

Lemma 3.2. [12] τ (f ; δ)L1,α

0−−−→
δ→0

if and only if f is an unbounded function.

Lemma 3.3. [12] If f and g are unbounded functions, then

τ(f + g; δ)Lp,α
≤ τ (f ; δ)Lp,α

+ τ(g; δ)Lp,α
.
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Lemma 3.4. For any unbounded function f , we have the inequality

ω(f ; δ)Lp,α([0,1]) ≤ τ(f ; δ)Lp,α([0,1]).

Proof.

ω(f ; δ)Lp,α = sup
0<h≤δ

(∫ 1

0

|(f (x+ h)− f (x))wα (x)|p dx
) 1

p

= sup
0<h≤δ

(∫ 1

0

∣∣∣∣(f (
x+

h

2

)
− f(x− h

2
)

)
wα (x)

∣∣∣∣p dx)
1
p

≤
(∫ 1

0

(
sup

0<h≤δ

∣∣∣∣(f (
x+

h

2

)
− f(x− h

2
)

)
wα (x)

∣∣∣∣)p

dx

) 1
p

≤
(∫ 1

0

(ω (f ;x; δ)wα (x))
p
dx

) 1
p

= ∥ω (f ; δ)∥Lp,α
= τ(f ; δ)Lp,α

.

□

Lemma 3.5. [12] For any unbounded function f and any λ ≥ 0, we have

τ(f ;λδ)Lp,α
≤ (λ+ 1) τ(f ; δ)Lp,α

.

If k is an integer, then

τ(f ; kδ)Lp,α
≤ kτ(f ; δ)Lp,α

.

The verify of this lemma is fundamentally the similar as the proof by Dolzhonko
and Seviast’ yanov in [9] for the situation p = 1.

Lemma 3.6. If f is a function unbounded on [0, 1], then

τ(f ;n−1)L1,α
≤ 3n−1 ∆n

k (f ;n),

where

∆n
k (f ;n) = sup

n∑
i=2

|f (xi)− f(xi−1)| ,

Proof. Write

S (f ;x; δ) = sup f (t) ; |t− x| ≤ δ

2
,

J (f ;x; δ) = inf f (t) ; |t− x| ≤ δ

2
.

It follows from the definition of τ(f ; δ)L1,α
that

τ(f ;n−1)L1,α

=

∫ 1

0

ω
(
f ;x;n−1

)
wα (x) dx =

∫ 1

0

(
S
(
f ;x;n−1

)
− J

(
f ;x;n−1

))
wα (x) dx,

=

n∑
i=1

∫ i
n

(i−1)
n

(
S
(
f ;x; n−1

)
− J

(
f ;x;n−1

))
wα (x) dx,
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≤ 1

n

n∑
i=1

(
S
(
f ; ξi;n

−1
)
− J

(
f ; ξi;n

−1
))

(2)

where ξi ∈ [ in ,
(i+1)

n ]. Let ϵ > 0 and ξi , ξi be such that

S
(
f ; ξi;n

−1
)

≤ f
(
ξi
)
+

ϵ

(2n)
, J

(
f ; ξi;n

−1
)
≥ f

(
ξ
i

)
− ϵ

(2n)
.

Then from 2 we have

τ(f ;n−1)L1,α ≤ 1

n

n∑
i=1

∣∣∣f (
ξi
)
− f

(
ξ
i

)∣∣∣+ ϵ. (3)

we split up the sum in 3 as follows:

n∑
i=1

∣∣∣f (
ξi
)
− f(ξ

i
)
∣∣∣ = 2∑

j=0

∑
i

∣∣∣f (
ξ3i−j

)
− f(ξ

3i−j
)
∣∣∣.

For n ≥ 4, ∑
i
∣∣∣f (

ξ3i−j

)
− f(ξ

3i−j
)
∣∣∣ ≤ ∆n

k (f ;n),

thus, the quantity of points situated in the last sum is less than
[
2n
3

]
+ 2 ≤ n,

and

max
(
ξ3i−j , ξ3i−j

)
≤ min

(
ξ3i+3−j , ξ3i+3−j

)
.

Thus
n∑

i=1

∣∣∣f (
ξi
)
− f(ξ

i
)
∣∣∣ ≤ 3An

k (f ;n).

□

Lemma 3.7. [8] If V (f, δ) < ∞, then for any δ > 0 we have the inequality

τ(f ; δ)L1,α
≤ δ V (f, δ)L1,α

,

where V (f, δ) is the variation of the function f on the interval [0,1].

Lemma 3.8. Let f be an absolutely continuous function. Then

τ(f ; δ)Lp,α
≤ δ ∥f ′∥Lp,α

.

Proof. Since

f (x)− f (y) =

∫ x

y

f ′ (t) dt,

we obtain

ω (f ; x; δ) = max
|t−x|≤δ/2

|t′−x|≤δ/2

|f (t)− f (t′)| = max
|t−x|≤δ/2

|t′−x|≤δ/2

∣∣∣∣∣
∫ t′

t

f ′ (u) du

∣∣∣∣∣
≤

∫ x+δ/2

x−δ/2

|f ′ (t)| dt =
∫ δ/2

−δ/2

|f ′(x− u)| du.
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Thus

τ(f ; δ)Lp,α
= ∥ω (f ; x; δ)∥Lp,α

≤

∥∥∥∥∥
∫ δ/2

− δ/2

|f ′ (x− u) du|

∥∥∥∥∥
Lp,α

≤
∫ δ/2

− δ/2

∥f ′∥Lp,α
du = δ ∥f ′∥Lp,α

.

□

Lemma 3.9. Let f be unbounded function, f ∈ Lp,α ([0, 1]) ,
∫ 1

0
f (t)wα (t) dt = 0,

and let there exist a polynomial T ∈ Tn such that T (x) ≥ f(x) for x ∈ [0, 1].
Then there exists a polynomial R ∈ Tn such that R(x) ≥

∫ x

0
f (t)wα (t) dt, x ∈[0, 1]

and
(∫ 1

0

∣∣R (x)−
∫ x

0
f (t)wα (t) dt

∣∣p dx) 1
p ≤ cη

n , where η = ∥f − T∥Lp,α
([0, 1])

As a lemma we’ve the following approximation, which we benefit from it in the
future:

Lemma 3.10. If f (r−1) is an unconditionally continuous function, then

Ẽk (f)Lp,α
≤ n−rc3 ∥fr∥Lp,α

.

The proof of Lemma 3.9 and lemma similar with the Theorems 4.1 and 4.2
in [4].

4. Main results

We now strengthen 1-sided approximations of unbounded functions in the
space Lp,α ([0, 1]) in terms average modulus of smoothness. The main objective
of this paper is to obtain the following analogs by utilizing the modulus

τ (f ; δ)Lp,α
= ∥ω (f ; x; δ)∥Lp,α

,

To establish and investigate some Jackson’s types theorems for best one-sided ap-
proximations in weighted Lp,α-spaces, where ω (f ; x; δ) = sup {|f (t)− f (t′) |}
|t − x| ≤ δ

2 , |t
′ − x| ≤ δ

2 , and t, t′ belongs to the domain of definition of the
function f . Although several problems concerning one-sided approximation by
algebraic polynomials with certain properties have been studied.

We first prove this theorem.

Theorem 4.1. Let the function f have integrable unbounded derivative f ′ on
the interval [0, 1]. Then for any k ≥ 1, we have the inequality.

Ẽk (f)Lp,α
≤ (k + 1)∆nẼk−1 (f

′)Lp,α
,

where, ∆n = max |xi − xi−1|, (1 ≤ i ≤ n).

Proof. (see [6]) Clearly we may assume that f(0) = 0.Lets, l ∈ Sk−1 Such that

s (x) ≥ f ′ (x) ≥ l (x) , x ∈ [0, 1] , (4)

∥s− l∥Lp,α([0,1]) ≤ Ẽk−1 (f
′)Lp,α

+ ϵ, ϵ > 0.
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Set

φi (x) =

i+k∑
j=i

k(xj − x)+
k−1

ωt′ (xj)
,

(x− t)+
k−1

=

{
(x− t)

k−1
, x ≥ t ,

0, x ≤ t,

i = 0, 1, . . . , n− k ; ωi (x) = (x− xi) (x− xi+1) . . . (x− xi+k) .

Since, ∫ ∞

−∞
φi (x)wα (x) dx = 1.

Clearly, φi ∈ Sk−1.Set

Ai =

∫ xi+1

xi

(s (x)− f ′ (x))wα (x) dx ≥ 0, Bi =

∫ xi+1

xi

(f ′ (x)− l (x))wα (x) dx ≥ 0.

And consider that

s∗ (x) =

∫ x

0

s (t)wα (t) dt−
n−k−1∑
i=0

Ai

∫ x

0

φi+1 (t)wα (t) dt,

l∗ (x) =

∫ x

0

l (t)wα (t) dt+

n−k−1∑
i=0

Bi

∫ x

0

φi+1 (t)wα (t) dt,

we have s∗ ∈ Sk, l
∗ ∈ Sk. If xi0 < x < xiε+1, then since f(0) = 0 we have

s∗ (x)−
∫ x

0

f ′ (t)wα (t) dt = s∗ (x)− f (x)

=

∫ x

0

(s (t)− f ′ (t))wα (t) dt−
n−k−1∑
i=0

Ai

∫ x

0

φi+1 (t)wα (t) dt

=

i0−1∑
i=0

∫ xi+1

xi

(s (t)− f ′ (t))wα (t) dt+

∫ x

x0

(s (t)− f ′ (t)wα (t) dt

−
i0−k−1∑

i=0

Ai −
i0−1∑

i=i0−k

Ai

∫ x

0

φi+1 (t)wα (t) dt

=

∫ x

x0

(s (t)− f ′ (t))wα (t) dt+

i0−1∑
i=i0−k

Ai

(
1−

∫ x

0

φi+1 (t)wα (t) dt

)
≥ 0. (5)(

Ai ≥ 0, 0 ≤
∫ x

0

φi+1 (t)wα (t) dt ≤ 1

)
.

We many prove analogously that l∗(x) ≤ f(x). Set s(x) = 0, l(x) = 0 for x < 0.
Then

∥s∗ − l∗∥Lp,α[0,1] =

{∫ 1

0

∣∣∣∣∣
∫ x

0

(s (t)− l (t))wα (t) dt
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−
n−k−1∑
i=0

(Ai +Bi)

∫ x

0

φi+1 (t)wα (t) dt

∣∣∣∣∣
p

dx

} 1
p

≤

{∫ 1

0

∣∣∣∣∣
∫ x

x−(k+1)∆n

(s (t)− l (t))wα (t) dt

∣∣∣∣∣
p

dx

} 1
p

=

{∫ 1

0

∣∣∣∣∣
∫ (k+1)∆n

0

(s (x− (k + 1)∆n + t)− l (x− (k + 1)∆n + t ))wα (t) dt

∣∣∣∣∣
p

dx

} 1
p

≤
∫ (k+1)∆n

0

{∫ 1

0

|s (x− (k + 1)∆n + t)− l (x− (k + 1)∆n + t )|
p

wα (x) dx

} 1
p

dt

≤
∫ (k+1)∆n

0

(
Ẽk−1 (f

′)Lp,α
+ ε

)
dt = (k + 1)∆n

(
Ẽk−1 (f

′)Lp,α
+ ε

)
. (6)

The relation of the theorem follows from inequality 5 and and inequality 6. □

Theorem 4.2. If f is an unbounded function on the closed interval [0, 1], then

Ẽ0 (f)Lp,α
≤ 2τ

(
f ;n−1

)
Lp,α

, 1 ≤ p ≤ ∞.

Proof. Set

s(x) = sup
t∈[xi−1,xi]

f(t), x ∈ [xi−1, xi) , s (1) = lim
x→1

s (x),

l (x) = inf
t∈[xi−1,xi]

f(t), x ∈ [xi−1, xi) , l (1) = lim
x→1

l (x).
(7)

It follows from 7 (see the notation of Lemma 3.6) that

f (x) ≦ s (x) ≤ S
(
f, x; 2n−1

)
,

f (x) ≥ l (x) ≥ J
(
f, x ; 2n−1

)
.

(8)

Since s, l ∈ S0 and

ω (f, x; δ) = S (f, x; δ)− J(f, x; δ),

using Lemma 3.5, from 8 we have

Ẽ0 (f)Lp,α
≤

{∫ 1

0

|(s (x)− l (x))wα (x)|p dx
} 1

p

≤
{∫ 1

0

∣∣(S (
f, x; 2n−1

)
− J

(
f, x; 2n−1

))
wα (x)

∣∣p dx} 1
p

= τ
(
f ; 2n−1

)
Lp,α

≦ 2τ
(
f ; n−1

)
Lp,α

.

□
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Theorem 4.3. Let f have integrable unbounded k-th derivative f (k) on the in-
terval [0, 1]. f ∈ Lp,α([0, 1]) with 1 ≤ p ≤ ∞. Then

Ẽk (f)Lp,α
≤ 2 (k + 1)!

(
n−1

)k
τ
(
f (k); n−1

)
Lp,α

.

Proof. In fact, by Theorem 4.1 k-times in succession and applying Theorem 4.2
to f (k), we obtain

Ẽk (f)Lp,α
≤ (k + 1)n−1Ẽk−1 (f

′)Lp,α
≤ . . .

≤ (k + 1)!
(
n−1

)k
Ẽ0

(
f (k)

)
Lp,α

2 (k + 1)!
(
n−1

)k
τ
(
fk;n−1

)
Lp,α

.

From the properties of the average module τ (f ; δ)Lp,α
and Theorem 4.3, we have

the following. □

Corollary 4.4. Let f ∈ Lp,α (X) ; 1 ≤ p ≤ ∞ with k-th derivative fk.Then

(1) Ẽk (f)c ≤ 2 (k + 1)!
(
n−1

)k
ω
(
f (k);n−1

)
,

(2) ( Freud -Popov Theorem [8] )

Ẽk (f)L1,α
≦ 2 (k + 1)!

(
n−1

)k+1
V (f (k), δ).

Corollary 4.5. (Babenko-Ligun Theorem [7]). if
∥∥f (k+1)

∥∥
Lp,α

< ∞, then

Ẽk (f)Lp,α
≤ c3 (k)

∥∥∥f (k+1)
∥∥∥
Lp,α

n−(k+1).

Corollary 4.6. Let f be an unbounded function. Then

ẼT
n (f)Lp,α

≤ cτ
(
f ;n−1

)
Lp,α

, 1 ≤ p ≤ ∞,

where c is an absolute constant.

Proof. Set xi = 2in−1, i = 0, . . . , 2n, yi = (xi−1 + xi)/2, i = 1, . . . , 2n, y2n+1 = y1
and define the functions sn and Jn as follows:

Sn (x) =


supt∈[xi−1,xi]for x = yi, i = 1, . . . , 2n,

max{Sn (yi) , Sn (yn+1)} for x = xi , i = 1, . . . , 2n,

Sn (0) = Sn (1) linear and continuous for x ∈ [xi−1, yi]and x ∈ [yi, xi] ,

i = 1, . . . , 2n .

Jn (x) =


inft∈[xi−1,xi]for x = yi, i = 1, . . . , 2n,

min{Jn (yi) , Jn (yn+1)} for x = xi , i = 1, . . . , 2n,

Jn (0) = Jn (1) linear and continuous for x ∈ [xi−1, yi]and x ∈ [yi, xi] ,

i = 1, . . . , 2n .

Clearly, we have

Jn (x) ≦ f (x) ≤ Sn (x) , x ∈ [0, 1] . (9)
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The derivatives S′
n (x) and J ′

n (x) of Sn and Jn exist at each point of the interval
[0,1]. Except the point xi, i = 0, . . . , 2n, yi, i = 1, . . . , 2n moreover, using the
definitions of the functions Sn and Jn, we immediately have

|S′
n(x)| ≤ nω

(
f, x; 2n−1

)
, x ̸= xi, yi,

|J ′
n(x)| ≤ nω

(
f, x; 2n−1

)
, x ̸= xi, yi,

(10)

e.g., if x ∈ (yi, xi), then as Sn is linear we have

|S′
n(x)| ≦ n |Sn (yi+1)− Sn (yi)| ≤ nω(f, x; 2n−1)),

and moreover,

0 ≤ Sn (x)− Jn(x) ≤ ω(f, x;n−1). (11)

It follows from 10 that

∥S′
n (x)∥Lp,α([0,1]) ≤ nτ

(
f ; 2n−1

)
Lp,α

,

∥J ′
n (x)∥Lp,α([0,1]) ≤ nτ

(
f ; 2n−1

)
Lp,α

,
(12)

Moreover, 11 gives

∥Sn − Jn∥Lp,α([0,1]) ≤ τ
(
f ;n−1

)
Lp,α

. (13)

Using Lemma 3.10, for r = 1, we obtain from 12

ẼT
n (Sn)Lp,α

≤ c (1) τ
(
f ; 2n−1

)
Lp,α

; ẼT
n (Jn)Lp,α

≤ c (1) τ
(
f ; 2n−1

)
Lp,α

. (14)

The following inequality is obvious:

ẼT
n (f)Lp,α

≤ ẼT
n (Sn)Lp,α

+ ∥Sn − Jn∥Lp,α
+ ẼT

n (Jn)Lp,α
. (15)

Using Lemma 3.5, from 13-15 we obtain

ẼT
n (f)Lp,α

≤ 2c (1) τ
(
f ; 2n−1

)
Lp,α

+ τ
(
f ; 2n−1

)
Lp,α

≤ cτ
(
f ;n−1

)
Lp,α

.

□

5. Conclusions

Average moduli τk (f ; δ)Lp,α
can be defined in analogy to kth continuity mod-

uli ωk (f ; δ)Lp,α
. Also, we obtained by us for the average moduli τk (f ; δ)Lp,α

are

a generalizations for some results in the literature, equivalent to the general sit-
uation of direct theorem for ωk (f ; δ)Lp,α

, obtained by Stechkin in the literature.
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