• Title/Summary/Keyword: ultraviolet (UV)-B

Search Result 248, Processing Time 0.031 seconds

Quality Evaluation of Modified Bo-Yang-Hwan-O-Tang by Capillary Electrophoresis and High-performance Liquid Chromatography

  • Chen, Jianbo;Wu, Enqi;Zhu, Hongmei;Lee, Kwan-Jun;Chu, Van Men;Cho, Cheong-Weon;Kim, Young-Ho;Park, Yong-Ki;Lee, Won-Jae;Kang, Jong-Seong
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2666-2670
    • /
    • 2011
  • High-performance liquid chromatography (HPLC) and capillary electrophoresis (CE) were used to identify five active components in the modified herbal decoction Bo-Yang-Hwan-O-Tang (mBHT), i.e., amygdalin, decursin, paeoniflorin, salvianolic acid B, and calycosin-7-O-${\beta}$-D-glycoside. These components were identified by comparing their retention times and mass spectra with those of reference compounds. The conditions of both analytical methods were optimized and validated. Sufficient separation of target analytes was achieved using a buffer consisting of 40 mM sodium borate and 60 mM sodium dodecylsulfate (SDS) containing 10% methanol (pH 9.5) at 250 nm for CE analysis and gradient elution with a water-methanol mobile phase and ultraviolet (UV) photodiode array detector (DAD) at 250 nm for HPLC analysis. The mBHT components were determined within 65 min by HPLC and 16 min by CE. All calibration curves showed high linearity (R > 0.999) within the ranges tested. Intra-day and inter-day precision were less than 1.6% and 1.8% for HPLC and 2.5% and 4.8% for CE, respectively. The accuracy of the methods ranged from 98.8% to 102.3% for HPLC and from 95.9% to 108.2% for CE.

Application of the Health Risk Models Estimating Skin Cancer Caused by UVB Radiation (자외선(UVB) 노출 증가에 대한 피부암 위해도 예측 모델의 적용)

  • Shin, Dong-Chun;Lee, Jong-Tae;Chung, Yong;Kang, Na-Kyung;Yang, Ji-Yeon
    • Environmental Analysis Health and Toxicology
    • /
    • v.11 no.1_2
    • /
    • pp.1-10
    • /
    • 1996
  • A decrease in stratospheric ozone probably caused by chloroflurocarbons (CFCs) emissions, has been observed large parts of-the globe. It is generally accepted that if ozone levels in the stratosphere are depleted, greater amounts of shortwave ultraviolet radiationB (UVB) will reach the earth's surface, resulting in increased incidence of nonmelanoma skin cancer. In this study, we evaluated several mathematical models, such as a power and an exponential model, and a geometric model considering the surface area of a human body part and ages for the prediction of Skin cancer incidence caused by exposure to the UVB radiation. These models basically estimated the risk of skin cancer based on those measurements of the local ozone in stratosphere and UVB. Both were measured at a part of Seoul with a Dobson ozone spectrometer and Robertson-Berger UV Biometer for 1995. As a result, we calculated the point estimation applying a biological amplification factor (BAF), UVB radiation and other factors. We used a Monte-Carlo simulation technique with assumption on the distribution of each considered factor. The sensitivity analysis of model by there components conducted using Gaussian sensitivity method. The annual integral of UVB radiation was 2275 MED (minimal erythema dose)/yr. Also, an estimate of the annual amount of UVB reaching the earth's surface at a korea's latitude and altitude was 3328 MED/yr. The values of the radiation amplification factor (RAF) were ranged from 0.9 to 1.5 in Seoul. To give the effective factors required to model the prediction of skin cancer incidence caused by exposure to the UVB radiation in Korea, we studied the pros and cons of above mentioned models with the application of those parameters measured in Seoul, Korea.

  • PDF

Far-ultraviolet Observations of the Taurus-Perseus-Auriga Complex

  • Lim, Tae-Ho;Min, Kyoung-Wook;Seon, Kwang-Il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.98.2-98.2
    • /
    • 2012
  • We firstly present the unified Far-UV continuum map of the Taurus-Auriga-Perseus (TPA) complex, one of the largest local associations of dark cloud located in (l, b)=([154,180], [-28, -2]), by merging both FIMS and GALEX. The FUV continuum map shows that dust extinction correlate well with the FUV around the complex. It shows strong absorption in FUV toward the dense Taurus cloud while it does not in California cloud. It turned out that it is related to the relative location of each cloud and Perseus OB2 association. We also present some results of dust scattering simulation based on Monte Carlo Radiative Transfer technique (MCRT). Through this dust scattering simulation, we have derived the scattering parameter for this region, albedo(a)=$0.42^{+0.05}{_{-0.05}}$, asymmetry factor(g)=$0.47^{+0.11}{_{-0.27}}$. The optical parameters we obtained seem reasonable compared to the theoretical model values ~0.40 and ~0.65 for the albedo and the phase function though the phase function is rather small. Using the result of simulation, we figured out the geometries of each cloud in the complex region, especially their distances and thicknesses. Our predictions from the results are in good agreement with the previous studies related to the TPA complex. For example, the Taurus cloud is within ~200pc from the Sun and the Perseus seems to be multi-layered, at least two. The California cloud is more distant than the other cloud on average at ~350 pc and Auriga cloud seems to be between the Taurus cloud and the eastern end of the California cloud. We figured out that across the TPA complex region, there might be some correlation between the LSR velocity and the distance to each cloud in the complex.

  • PDF

Manufacture of Black Color Zirconia Ceramics Used by Eco-Friendly Materials (친환경 재료를 사용한 흑색 지르코니아 세라믹스 제조)

  • Joo, In-Don;Lee, Byung-Ha
    • Korean Journal of Materials Research
    • /
    • v.21 no.12
    • /
    • pp.685-689
    • /
    • 2011
  • The goal of this investigation was to produce a zirconia-family black ceramics that has enhanced functionality and reliability. Color zirconia ceramics have been produced by adding pigments. Pigments cause structural defects within zirconia and result in a drop in physical properties. Using environmentally friendly rice husk, we produced a black zirconia that is free of structural defects. In optimal firing conditions for black zirconia the calcining temperatures of the molding product are changed from $400^{\circ}C$ to $1200^{\circ}C$, and the firing temperatures are changed from $1400^{\circ}C$ to $1600^{\circ}C$. Color of testing the specimens was analyzed using Ultraviolet (UV) spectroscopy. Scanning Electron Microscope (SEM), EDAX (EDX), and Fourier transform infrared spectroscopy (FT-IR) analyses were carried out in order to examine impregnation properties and crystal phases. Universial Test Machine (UTM) was used to measure the flexual strength as well as the compressive strength. From experimental results, it was found that in optimal firing conditions the sample was calcined from $1000^{\circ}C$ to $1500^{\circ}C$. Commission internationalde I'Edairage (CIE) values of manufactured black zirconia color were $L^*$ = 29.73, $a^*$ = 0.23, $b^*$ = -2.68. The bending strength was 918 MPa and the compressive strength was 2676 MPa. These strength values are similar to typical strength values of zirconia, which confirms that carbon impregnation did not influence physical properties.

Agastache rugosa Kuntze Attenuates UVB-Induced Photoaging in Hairless Mice through the Regulation of MAPK/AP-1 and TGF-β/Smad Pathways

  • Yun, Mann-Seok;Kim, Changhee;Hwang, Jae-Kwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1349-1360
    • /
    • 2019
  • Chronic exposure to ultraviolet (UV) radiation, regarded as a major cause of extrinsic aging or photoaging characterized by wrinkle formation and skin dehydration, exerts adverse effects on skin by causing the overproduction of reactive oxygen species. Agastache rugosa Kuntze, known as Korean mint, possesses a wide spectrum of biological properties including anti-oxidation, anti-inflammation, and anti-atherosclerosis. Previous studies have reported that A. rugosa protected human keratinocytes against UVB irradiation by restoring the anti-oxidant defense system. However, the anti-photoaging effect of A. rugosa extract (ARE) in animal models has not yet been evaluated. ARE was orally administered to hairless mice at doses of 100 or 250 mg/kg/day along with UVB exposure for 12 weeks. ARE histologically improved UVB-induced wrinkle formation, epidermal thickening, erythema, and hyperpigmentation. In addition, ARE recovered skin moisture by improving skin hydration and transepidermal water loss (TEWL). Along with this, ARE increased hyaluronic acid levels by upregulating HA synthase genes. ARE markedly increased the density of collagen and the amounts of hydroxypoline via two pathways. First, ARE significantly downregulated the mRNA expression of matrix metalloproteinases responsible for collagen degradation by inactivating the mitogen-activated protein kinase/activator protein 1 pathway. Second, ARE stimulated the transforming growth factor beta/Smad signaling, consequently raising the mRNA levels of collagen-related genes. In addition, ARE not only increased the mRNA expression of anti-oxidant enzymes but also decreased inflammatory cytokines by blocking the protein expression of nuclear factor kappa B. Collectively, our findings suggest that A. rugosa may be a potential preventive and therapeutic agent for photoaging.

Eyes and Vision of the Bumblebee: a Brief Review on how Bumblebees Detect and Perceive Flowers

  • Meyer-Rochow, V.B.
    • Journal of Apiculture
    • /
    • v.34 no.2
    • /
    • pp.107-115
    • /
    • 2019
  • Bumblebees have apposition compound eyes (one on either side of the head) of about 6,000 ommatidia and three small single-lens ocelli on the frons of their head capsule. The surface of the eye is smooth and interommatidial hairs, as in the honeybee, are not developed. Each ommatidium (approx. 26 ㎛ in diameter) is capped by a hexagonal facet and contains in its centre a 3 ㎛ wide, columnar light-perceiving structure known as the rhabdom. Rhabdoms consist of thousands of regularly aligned, fingerlike microvilli, which in their membranes contain the photopigment molecules. Axons from each ommatidium transmit the information of their photic environment to the visual centres of the brain, where behavioural reactions may be initiated. Since bumblebee eyes possess three classes of spectrally different sensitivity peaks in a ratio of 1:1:6 (UV= 353 nm, blue= 430 nm and green=548 nm) per ommatidium, they use colour vision to find and select flower types that yield pollen and nectar. Ommatidial acceptance angles of at least 3° are used by the bumblebees to discriminate between different flower shapes and sizes, but their ability to detect polarized light appears to be used only for navigational purposes. A flicker fusion frequency of around 110Hz helps the fast flying bumblebee to avoid obstacles. The small ocelli are strongly sensitive to ultraviolet radiation and green wavelengths and appear to act as sensors for light levels akin to a photometer. Unlike the bumblebee's compound eyes, the ocelli would, however, be incapable of forming a useful image.

Synthesis of Titanate Nanotubes Via A Hydrothermal Method and Their Photocatalytic Activities

  • Kim, Ye Eun;Byun, Mi Yeon;Lee, Kwan-Young;Lee, Man Sig
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.147-154
    • /
    • 2022
  • Titanate nanotubes (TNTs) were synthesized via alkaline hydrothermal treatment using commercial TiO2 nanoparticles (P25). The TNTs were prepared at various TiO2/NaOH ratios, hydrothermal temperatures, and hydrothermal times. The synthesized catalysts were characterized by X-ray diffraction, field-emission scanning electron microscopy, N2 adsorption-desorption isotherms, field-emission transmission electron microscopy, and ultraviolet-visible spectroscopy. TNTs were generated upon a decrease in the TiO2/NaOH ratio due to the dissolution of TiO2 in the alkaline solution and the generation of new Ti-O-Ti bonds to form titanate nanoplates and nanotubes. The hydrothermal treatment temperature and time were important factors for promoting the nucleation and growth of TNTs. The TNT catalyst with the largest surface area (389.32 m2 g-1) was obtained with a TiO2/NaOH ratio of 0.25, a hydrothermal treatment temperature of 130 ℃, and a hydrothermal treatment time of 36 h. Additionally, we investigated the photocatalytic activity of methyl violet 2B (MV) over the TNT catalysts under UV irradiation and found that the degradation efficiencies of the TNTs were higher than that of P25. Among the TNT catalysts, the TNT catalyst that was hydrothermally synthesized for 36 h (TNT 36 h) exhibited a 96.9% degradation efficiency and a degradation rate constant that was 4.8 times higher than P25 due to its large surface area, which allowed for more contact between the MV molecules and TNT surfaces and facilitated rapid electron transfer. Finally, these results were correlated with the specific surface area.

Chemical Properties and Spectroscopic Characteristics of Humic Fractions Isolated from Commercial Organic Fertilizers (국산(國産) 유기질비료(有機質肥料)의 부식조성(腐植組成) 및 분광학적(分光學的) 특성(特性))

  • Kim, Jeong-Je;Yang, Jae-E;Shin, Young-Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.1
    • /
    • pp.44-52
    • /
    • 1996
  • Humic substances of 17 organic fertilizers available on the market were the objects of study. The list of ingredients for formulation of them comprised fish meal. bone meal, oil-cakes, brewer's grains, peat, sawdust, wood bark, zeolite, soil conditioner, live-stock droppings, amino acid fermentation byproduct, chaff, limestone and others. Humic and fulvic acids were isolated from those substances and given chemical and spectroscopic analyses. Nutritional values of the organic fertilizers showed big diversity. Humification of organic matter was incomplete for some of the fertilizers as indicated by a high C/N ratio. Extractable humic acid percentage was higher, in general, than that of fulvic acid. Also the relative content of humin increased with advanced humification. Total acidity was closely related to phenolic hydroxyl groups. Relationships between carboxyl and hydroxyl groups. and carboxyl and alcoholic hydroxyl groups were very significant. Ultraviolet and visible light absorption spectra of humic and fulvic acids were substantially similar. The types of humic acids were B. P, and Rp. Two humic acids of the 17 samples belonged to B type. 3 to P type and all the rest to Rp type.

  • PDF

Anti-aging Effects of Marine Natural Extracts against UVB-induced Damages in Human Skin Cells (UVB로 손상이 유도된 피부세포에 해양소재 추출물의 항노화 효능)

  • Lee, Chan;Jang, Jung-Hee;Kim, Bo-Ae;Park, Chan-Ik
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.38 no.3
    • /
    • pp.255-261
    • /
    • 2012
  • The skin is continuously exposed to environmental stresses. One of the most important stress factor is UV radiation. UV radiation causes a variety of biological effects on the skin, including inflammation, pigmentation, photoaging and cancer. Therefore in this study, we tried to search for skin-protective antioxidant materials from marine natural products (Porphyra Thalli, Laminariae japonicae thallus, Ostreae Concha, Sargassum Thallus, Undaria thallus, Haliotidis Concha, Agar, Codium thalli, Hizikia fusiforme thalli; HFE, Thalli) which exhibit protective activities against UVB-induced cytotoxicity and oxidative cell death and antiaging effects. As a results, UVB-induced cytotoxicity and cell death were effectively suppressed by treatment of Sargassum Thallus, Agar, Haliotidis Concha, Codium thalli, Thalli ethanol extracts. UVB-induced cell death was mediated by intracellular accumulation or ROS, which was significantly inhibited by treatment with marine natural products extracts. Also, The protective effect of these marine natural products seemed to be mediated by increased expression of type I collagen and Type I procollagen. These results suggest that marine natural products may have anti-aging effects new functional materials against oxidative stress-mediated skin damages.

Effects of Bambusae Caulis in Taeniam Extract on the UVB-induced Cell Death, Oxidative Stress and Matrix Metalloproteinase 1 Expression in Keratinocytes (각질세포에서 자외선B가 유도한 세포 사멸, 산화적 스트레스 및 matrix metalloproteinase 1 발현에 대한 죽여추출물의 영향)

  • Seok, Jin Kyung;Kwak, Jun Yup;Seo, Hyeong Ho;Suh, Hwa Jin;Boo, Yong Chool
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.1
    • /
    • pp.9-20
    • /
    • 2015
  • Ultraviolet radiation (UV) is a major cause of skin photoaging, and effective UV protecting agents are needed for the skin health and beauty. This study was undertaken to examine the effects of Bambusae caulis in Taeniam extract (BCTE) on UVB-induced cell death, oxidative stress and matrix metalloproteinase 1 (MMP1) expression in cell-based assays. HaCaT human keratinocytes were exposed to UVB in the presence of BCTE at different concentrations and resulting changes in cell viability and biochemical events were determined. The results showed that BCTE enhanced the viabilities of UVB-exposed cells, and attenuated apoptotic events such as cleavage of procaspase 3 to its active form, and the increase of Bax to Bcl-2 ratios. BCTE also attenuated the reactive oxygen generation and lipid peroxidation in cells exposed to UVB. Additionally, it attenuated the expression of matrix metalloproteinase 1 and the phosphorylation of c-Jun N-terminal kinase stimulated by UVB. Conclusively, the present study demonstrated that BCTE pro tected skin cells from the UVB-induced cell death, oxidative stress and MMP1 expression, suggesting its potential use as a cosmetic ingredient mitigating some features of the skin photoaging.