DOI QR코드

DOI QR Code

Eyes and Vision of the Bumblebee: a Brief Review on how Bumblebees Detect and Perceive Flowers

  • Meyer-Rochow, V.B. (Department of Ecology and Genetics, Oulu University and Department of Plant Medicals, Andong National University)
  • Received : 2018.12.27
  • Accepted : 2019.03.28
  • Published : 2019.06.30

Abstract

Bumblebees have apposition compound eyes (one on either side of the head) of about 6,000 ommatidia and three small single-lens ocelli on the frons of their head capsule. The surface of the eye is smooth and interommatidial hairs, as in the honeybee, are not developed. Each ommatidium (approx. 26 ㎛ in diameter) is capped by a hexagonal facet and contains in its centre a 3 ㎛ wide, columnar light-perceiving structure known as the rhabdom. Rhabdoms consist of thousands of regularly aligned, fingerlike microvilli, which in their membranes contain the photopigment molecules. Axons from each ommatidium transmit the information of their photic environment to the visual centres of the brain, where behavioural reactions may be initiated. Since bumblebee eyes possess three classes of spectrally different sensitivity peaks in a ratio of 1:1:6 (UV= 353 nm, blue= 430 nm and green=548 nm) per ommatidium, they use colour vision to find and select flower types that yield pollen and nectar. Ommatidial acceptance angles of at least 3° are used by the bumblebees to discriminate between different flower shapes and sizes, but their ability to detect polarized light appears to be used only for navigational purposes. A flicker fusion frequency of around 110Hz helps the fast flying bumblebee to avoid obstacles. The small ocelli are strongly sensitive to ultraviolet radiation and green wavelengths and appear to act as sensors for light levels akin to a photometer. Unlike the bumblebee's compound eyes, the ocelli would, however, be incapable of forming a useful image.

Keywords

References

  1. Avargues-Weber, A., T. Mota and M. Giurfa. 2012. New vistas on honey bee vision. Apidologie 43: 244-268. https://doi.org/10.1007/s13592-012-0124-2
  2. Bremer, S., H. Hertel and E. Wachmann. 1993. Degeneration of the compound eye of the termite Neotermes jouteli (Isoptera) in darkness during the phase of reproduction. Zoomorphol 113: 205-210. https://doi.org/10.1007/BF00394861
  3. Brito, V. L. G., K. Weynans, M. Sazima and K. Lunau. 2015. Trees as huge flowers and flowers as oversized floral guides: the role of floral color change and retention of old flowers in Tibouchina pulchra. Front. Plant Sci. https://doi.org/10.3389/fpls.2015.00362.
  4. Butler, L., R. Roppel and J. Zeigler. 1970. Post emergence maturation of the eye of the adult black carpet beetle, Attagenus megatoma (Fab.). J. Morphol. 130: 103-128. https://doi.org/10.1002/jmor.1051300110
  5. Campan, R., A. Gallo and Y. Queinnes. 1965. Determination electroretinographique de la frequence critique de fusionnement visual: etude comparative portant sur les yeux composes de dix-sept especes d'insectes. C. R. Soc. Biol. 159: 2521-2526
  6. Chittka, L., A. Shmida, N. Troje and R. Menzel. 1994. UV arrangement of flower reflections and the colour perception of Hymenoptera. Vision Res. 34: 1489-1508. https://doi.org/10.1016/0042-6989(94)90151-1
  7. Chittka, L., N. M. Williams, H. Rasmussen and D. Thomas. 1999. Navigation without vision: bumblebee orientation in complete darkness. Proc. Biol. Sci. B 266(1414): 45-50. https://doi.org/10.1098/rspb.1999.0602
  8. Dyer, A. G., J. Spaethe and S. Prack. 2008. Comparative psychophysics of bumblebee and honeybee colour discrimination and object detection. J. Comp. Physiol. A 194: 614-627.
  9. Dyer, F. C. and J. L. Gould. 1983. Honey Bee Navigation: The honey bees ability to find its way depends on a hierarchy of sophisticated orientation mechanisms. Am. Scient. 71(6): 587-597.
  10. Eguchi, E. 1999. Polarized light vision and rhabdom. pp. 33-46. in Atlas of arthropod sensory receptors, eds. by E. Eguchi and Y. Tominaga. Springer, Tokyo, Berlin, New York.
  11. Eisen, J. S. and N. N. Youssef. 1980. Fine structural aspects of the developing compound eye of the honey bee Apis mellifera L. J. Ultrastruct. Res. 71(1): 79-94. https://doi.org/10.1016/S0022-5320(80)90038-6
  12. Garcia, J. E., Y.-S. Hung, A. D. Greentree, M. G. P. Rosa, J. A. Endler and A. G. Dyer. 2017. Improved color constancy in honey bees enabled by parallel visual projections from dorsal ocelli. PNAS 114(29): 7713-7718. https://doi.org/10.1073/pnas.1703454114
  13. Goodman, L. J. 1970. The Structure and function of the insect dorsal ocellus. Adv. Insect Physiol. 7: 97-195. https://doi.org/10.1016/S0065-2806(08)60241-6
  14. Gullan, P. J. and P. S. Cranston. 2000. The Insects-An Outline of Entomology. Blackwell Publishing, Oxford.
  15. Honkanen, A., P. Saari, J. Takalo, K. Heimonen and M. Weckstrom. 2018. The role of ocelli in cockroach optomotor performance. J. Comp. Physiol. A 204(2): 231-243. https://doi.org/10.1007/s00359-017-1235-z
  16. Horridge, G. A. 1971. Alternatives to superposition images in clear-zone compound eyes. Proc. Roy. Soc. Lond. B 179: 97-124. https://doi.org/10.1098/rspb.1971.0084
  17. Horridge, G. A. 1977. Insects which turn and look. Endeavour 1: 7-17. https://doi.org/10.1016/0160-9327(77)90004-7
  18. Horridge, G. A. 2000. Seven experiments on pattern vision of the honeybee, with a model. Vision Res. 40: 2589-2603. https://doi.org/10.1016/S0042-6989(00)00096-1
  19. Kirschfeld, K. 1972. Die notwendige Anzahl zur Bestimmung der Richtung des elektrischen Vektors linear polarisierten Lichtes. Z. Naturforsch. 27b: 578-579. https://doi.org/10.1515/znb-1972-0524
  20. Kolb, G. and H. Autrum. 1972. Die Feinstruktur im Auge der Biene bei Hell und Dunkeladaptation, J. Comp. Physiol. 77: 113-125. https://doi.org/10.1007/BF00693601
  21. Krapp, H. G. 2007. Polarization vision: how insects find their way by watching the sky. Curr. Biol. 17: R557-R560. https://doi.org/10.1016/j.cub.2007.05.022
  22. Laughlin, S. B. and G. A. Horridge. 1971. Angular sensitivity of the retinula cells of dark adapted worker bee. Z. Vergl. Physiol. 74: 329-335. https://doi.org/10.1007/BF00297733
  23. Lehrer, M. 1994. Spatial vision in the honey bee: the use of different cues in different tasks. Vision Res. 34: 2363-2385. https://doi.org/10.1016/0042-6989(94)90282-8
  24. Lunau, K., V. Piorek, O. Krohn and E. Pacini. 2015. Just spines - mechanical defence of malvaceous pollen against collection by corbiculate bees. Apidologie 46: 144-149. https://doi.org/10.1007/s13592-014-0310-5
  25. Lunau, K., K. Wacht and L. Chittka. 1996. Colour choices of naïve bumble bees and their implication for colour perception. J. Comp. Physiol. A 178: 477-489.
  26. Macuda, T., R. J. Gegear, T. M. Laverty and B. Timney. 2001. Behavioural assessment of visual acuity in bumblebees (Bombus impatiens). J. Exp. Biol. 204(3): 559-564. https://doi.org/10.1242/jeb.204.3.559
  27. Menzel, J. G., H. Wunderer and D. G. Stavenga. 1991. Functional morphology of the divided compound eye of the honeybee drone (Apis mellifera). Tissue Cell 23(4): 525-535. https://doi.org/10.1016/0040-8166(91)90010-Q
  28. Menzel, R. 1968. Das Gedachtnis der Honigbiene fur Spektralfarben. I. Kurzzeitiges und langzeitiges Behalten. Z. Vergl. Physiol. 60: 82-102. https://doi.org/10.1007/BF00737097
  29. Menzel, R. 1979. Spectral sensitivity and colour vision in invertebrates. pp. 503-580. in Handbook of Sensory Physiology Vol VII/6A, ed. by H. Autrum. Springer Verlag, Berlin.
  30. Meyer-Rochow, V. B. 1981. Electrophysiology and histology of the eye of the bumblebee Bombus hortorum (L.)(Hymenoptera; Apidae). J. Roy. Soc. N. Zld. 11(s): 123-153. https://doi.org/10.1080/03036758.1981.10419447
  31. Meyer-Rochow, V. B. 2002. Honeybee heads weigh less in winter than in summer: a possible explanation. Ethol. Ecol. Evol. 14: 69-71. https://doi.org/10.1080/08927014.2002.9522762
  32. Meyer-Rochow, V. B. 2008. Zur funktionellen Bedeutung unterschiedlicher Augenstrukturen bei sexualdimorphen Nachtfaltern und Leuchtkafern: eine kurze Zusammenfassung neuerer Ergebnisse. Entomologie Heute 20: 193-208.
  33. Meyer-Rochow, V. B. and J. Gal. 2004. Dimensional limits for arthropod eyes with superposition optics. Vision Res. 44: 2213-2223. https://doi.org/10.1016/j.visres.2004.04.009
  34. Meyer-Rochow, V. B., T. Kashiwagi and E. Eguchi. 2002. Selective photoreceptor damage in four species of insects induced by experimental exposures to UV-irradiation. Micron 33: 23-31. https://doi.org/10.1016/S0968-4328(00)00073-1
  35. Orban, L. L. and C. M. S. Plowright. 2014. Getting to the start line: how bumblebees and honeybees are visually guided towards their first floral contact. Insect Soc. 61: 325-336 DOI 10.1007/s00040-014-0366-2.
  36. Papiorek, S., K. Rohde and K. Lunau. 2013. Bee's subtle colour preferences: how bees respond to small changes in pigment concentration. Naturwissenschaften 100: 633-643. https://doi.org/10.1007/s00114-013-1060-3
  37. Perrelet, A. 1970. The fine structure of the retina of the honey bee drone. Z. Zellforsch. Mikrosk. Anat. 108: 530-562. https://doi.org/10.1007/BF00339658
  38. Raine, N. and L. Chittka. 2007. Flower constancy and memory dynamics in bumblebees (Hymenoptera: Apidae: Bombus). Entomol. Gener. 29(2-4): 179-199. https://doi.org/10.1127/entom.gen/29/2007/179
  39. Rigosi, E., S. D. Wiederman and D. O'Carroll. 2017. Visual acuity of the honey bee retina and the limits for feature detection. Sci. Rep. 7: 45972. https://doi.org/10.1038/srep45972
  40. Skorupski, P. and L. Chittka. 2010. Differences in photoreceptor processing speed for chromatic and achromatic vision in the bumblebee Bombus terrestris. J. Neurosci. 30(11): 3896-3903. https://doi.org/10.1523/JNEUROSCI.5700-09.2010
  41. Skorupski, P., T. F. Doring and L. Chittka. 2007. Photoreceptor spectral sensitivity in island and mainland populations of the bumblebee, Bombus terrestris. J. Comp. Physiol. A 193: 485-494. https://doi.org/10.1007/s00359-006-0206-6
  42. Skrzipek, K. H. and H. Skrzipek. 1974. The ninth retinula cell in the ommatidium of the worker honey bee (Apis mellifica L.). Z. Zellforsch. Mikrosk. Anat. 147(4): 589-593. https://doi.org/10.1007/BF00307257
  43. Srinivasan, M. V., S. W. Zhang and K. Whitney. 1994. Visual discrimination of pattern orientation by honeybees. Phil. Trans. Roy. Soc. Lond. 343: 199-210. https://doi.org/10.1098/rstb.1994.0021
  44. Streinzer, M., A. Brockmann, N. Nagaraja and J. Spaethe. 2013. Sex and caste-specific variation in compound eye morphology of five honeybee species. PloS One 8(2): e57702. https://doi.org/10.1371/journal.pone.0057702
  45. Taylor, G. J., P. Tichit, M. D. Schmidt, A. J. Bodey, C. Rau and E. Baird. 2019. Bumblebee visual allometry results in locally improved resolution and globally improved sensitivity. eLife 2019;8:e40613. DOI: https://doi.org/10.7554/eLife.40613.
  46. Van der Kooi, C. J., A. G. Dyer, P. G. Kevan and K. Lunau. 2018. Functional significance of the optical properties of flowers for visual signalling. Annals of Botany, in press.
  47. Wehner, R. 1976. Polarized light navigation by insects. Scient. Am. 235: 106-115. https://doi.org/10.1038/scientificamerican0776-106
  48. Wehner, R. 1981. Spatial vision in arthropods. pp. 287-616. in Handbook of Sensory Physiology Vol. VII/6c, ed. by H. Autrum. Springer, Berlin, Heidelberg, New York.
  49. Wehner, R. and M. V. Srinivasan. 2003. Path integration in insects. pp. 9-30. in The Neurobiology of Spatial Behaviour, ed. by K. J. Jefferey. Oxford University Press, Oxford.
  50. Wellington, W. G. 1974. Bumblebee ocelli and navigation at dusk. Science 183(4124): 550-551. https://doi.org/10.1126/science.183.4124.550
  51. Wilmsen, S., R. Gottlieb, R. R. Junker and K. Lunau. 2016. Bumblebees require visual pollen stimuli to initiate and multimodal stimuli to complete a full behavioral sequence in close-range flower orientation. Ecol. Evol. 7(5): 1384-1393. https://doi.org/10.1002/ece3.2768
  52. Zeil, J., W. A. Ribi and A. Narendra 2014. Polarisation vision in ants, bees and wasps. G. Horvath (ed.), Polarized Light and Polarization Vision in Animal Sciences, Springer Series in Vision Research 2, Berlin, Heidelberg, New York DOI 10.1007/978-3-642-54718-8_3.

Cited by

  1. Intermittent control strategy can enhance stabilization robustness in bumblebee hovering vol.16, pp.1, 2021, https://doi.org/10.1088/1748-3190/abbc65
  2. Genus-Wide Characterization of Bumblebee Genomes Provides Insights into Their Evolution and Variation in Ecological and Behavioral Traits vol.38, pp.2, 2021, https://doi.org/10.1093/molbev/msaa240