• Title/Summary/Keyword: ultrasonic spray

Search Result 206, Processing Time 0.027 seconds

Efficacy of various cleansing techniques on dentin wettability and its influence on shear bond strength of a resin luting agent

  • Munirathinam, Dilipkumar;Mohanaj, Dhivya;Beganam, Mohammed
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.3
    • /
    • pp.139-145
    • /
    • 2012
  • PURPOSE. To evaluate the shear bond strength of resin luting agent to dentin surfaces cleansed with different agents like pumice, ultrasonic scaler with chlorhexidine gluconate, EDTA and the influence of these cleansing methods on wetting properties of the dentin by Axisymmetric drop Shape Analysis - Contact Diameter technique (ADSA-CD). MATERIALS AND METHODS. Forty coronal portions of human third molar were prepared until dentin was exposed. Specimens were divided into two groups: Group A and Group B. Provisional restorations made with autopolymerizing resin were luted to dentin surface with zinc oxide eugenol in Group A and with freegenol cement in Group B. All specimens were stored in distilled water at room temperature for 24 hrs and provisional cements were mechanically removed with explorer and rinsed with water and cleansed using various methods (Control-air-water spray, Pumice prophylaxis, Ultrasonic scaler with 0.2% Chlorhexidine gluconate, 17% EDTA). Contact angle measurements were performed to assess wettability of various cleansing agents using the ADSA-CD technique. Bond strength of a resin luting agent bonded to the cleansed surface was assessed using Instron testing machine and the mode of failure noted. SEM was done to assess the surface cleanliness. Data were statistically analyzed by one-way analysis of variance with Tukey HSD tests (${\alpha}$=.05). RESULTS. Specimens treated with EDTA showed the highest shear bond strength and the lowest contact angle for both groups. SEM showed that EDTA was the most effective solution to remove the smear layer. Also, mode of failure seen was predominantly cohesive for both EDTA and pumice prophylaxis. CONCLUSION. EDTA was the most effective dentin cleansing agent among the compared groups.

Y-TZP Fine Powder Preparation by Ultrasonic Spray Pyrolysis (초음파 분무 열분해법에 의한 Y-TZP 미립자의 합성)

  • 이정형;김복희;최의석;황재석
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.4
    • /
    • pp.325-331
    • /
    • 1993
  • Aqueous solutions of metallic salts, ZrO(NO3)2.2H2O and Y(NO3)3.5H2O were used as raw materials to synthesize crystalline submicron spherical powders of Zr0.94Y0.06O1.97 with tetragonal crystal phase. Each aqueous solution was mixed on the magnetic stirrer to homogenize for 12 hours. The concentration of the mixed solutionwas changed from 0.01mol/$\ell$ to 0.1mol/$\ell$ calculated as the concentration of Zr0.94Y0.06O1.97. Ultrafine droplets of starting mixed solution were sprayed by the ultrasonic vibrator and carried into the furnace kept at 55$0^{\circ}C$, $650^{\circ}C$, 75$0^{\circ}C$ and 85$0^{\circ}C$ using carrier gas of air (10$\ell$/min) and pyrolysed to form Y-TZP fine powders. The results of this exeriment were as follows. 1) Synthesized powders were nonagglomerated and spherical type. 2) Particle size distribution was narrow between 0.1${\mu}{\textrm}{m}$ and 1${\mu}{\textrm}{m}$. 3) Forming reaction Y-TZP was finished above synthetic temperature 75$0^{\circ}C$. 4) As the synthetic temperature rised from 55$0^{\circ}C$ to 85$0^{\circ}C$, the mean particle size decreased from 0.35${\mu}{\textrm}{m}$ to 0.22${\mu}{\textrm}{m}$ in the concentration of starting solution with 0.02mol/$\ell$. 5) At 75$0^{\circ}C$ of synthetic temperature, the concentration changes of starting solution from 0.01mol/$\ell$ to 0.1mol/$\ell$ increased the mean particle size from 0.24${\mu}{\textrm}{m}$ to 0.38${\mu}{\textrm}{m}$. 6) Chemical compositions of each synthesized particle were homogeneous nearly.

  • PDF

Preparation of Micro- and Submicron-Particles of a Poorly Water-Soluble Antifungal Drug Using Supercritical Fluid Process (초임계유체공정을 이용한 난용성 항진균제의 미세입자 제조)

  • Kim, Seok-Yun;Lee, Jung-Min;Won, Byoung- Hyun;Jung, In-Il;Ryu, Jong-Hoon;Lim, Gio-Bin
    • Clean Technology
    • /
    • v.16 no.2
    • /
    • pp.80-87
    • /
    • 2010
  • In this study, micro- and submicron particles of itraconazole, a poorly water-soluble antifungal drug, were prepared for improving its aqueous solubility using an ultrasound-assisted supercritical fluid technique, called SAS-EM. The SAS-EM process used in our experiments was different from the conventional SAS-EM in that the ultrasound was applied directly to the spray nozzle. The effect of the ultrasonic power, temperature, and solvent on the formation of itraconazole particles were investigated. Smaller particles were obtained through our SAS-EM process compared with the ASES process, and the mean particle size decreased as the ultrasonic power increased. Our experimental results confirmed that the ultrasound-assisted supercritical fluid process is an efficient method for producing ultrafine particles.

Analysis of Key Parameters for the Printing Process Optimization of a Fluid Dispensing Systems (유체 디스펜싱 시스템의 프린팅 프로세스 최적화를 위한 주요 파라미터 분석)

  • Hoseung Kang;Haechang Jeong;Soonho Hong;Nam Kyung Yoon;Sunyoung Sohn
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.382-393
    • /
    • 2024
  • The Microplotter system with a fluid dispensing method, sprays fluid based on ultrasonic pumping through piezoelectric devices. This technique can possible for various materials with a wide range of viscosities to be printed in microscale. In this paper, we introduces dispenser printing technology as well as aim to understand and apply various processes using the equipment. In addition, we will explain how to optimize the equipment by adjusting parameters such as spray intensity, tip height during printing, and patterning speed. By utilizing Microplotter's advantage of being compatible with a wide range of fluids, including metal nanoparticles, carbon nanotubes, DNA, and proteins, it is expected to be used in various fields such as printed electronics, biotechnology, and chemical engineering.

Adhesion Characteristics of Polymers and Ceramic Surface Coated on Metal by Plasma Spray (플라즈마 용사법에 의한 금속면에 세라믹 코팅된 표면과 범용고분자와의 접착특성)

  • Lee, Gyeong-Hui;Gwon, Sun-Hun;Jo, Won-Je;Ha, Chang-Sik
    • Korean Journal of Materials Research
    • /
    • v.9 no.7
    • /
    • pp.724-734
    • /
    • 1999
  • The adhesion characteristics of the thermoplastic resins such as PE, PP PVC, PET and PS were investigated on the surfaces of conventional steel (SS41), steel (SS41P) treated with ultrasonic waves and the SS41P coated with several ceramic powders (SS41PC) by the plasma spray. Alumina (Al$_2$O$_3$), alumina titania (Al$_2$O$_3$95%, TiO$_2$ 5%) and zirconia yttria (ZrO$_2$ 95%, $Y_2$O$_3$5% ) were used for the materials plasma spray The morphologies, surface hardness, surface roughness, and contact angles on SS41, SS41P, and SS41PC were examined. The tensile shear strength and peel strength of the polymers which were attached to the surfaces of ceramics coated on SS41P also were measured. The tensile shear strength and peel strength of polymers adhered to ceramic surface coated on steel were found to be stronger than those of conventional steel. The tensile shear strength and peel strength of the polymers adhered on the surfaces of ceramics coated steel increased in the following order PE > PET > PP > PS > PVC. The high adhesion strength of PE may be attributed to the surface roughness and its anchor effect on the ceramic surface.

  • PDF

A Study on Advanced Impinging Baffle Model in Extraction Nozzle of a Feedwater Heater (급수가열기 추기노즐의 개선된 충격판 모델에 관한 연구)

  • Lee, Woo;Hwang, Kyeong-Mo;Kim, Kyung-Hoon
    • Journal of ILASS-Korea
    • /
    • v.12 no.1
    • /
    • pp.18-29
    • /
    • 2007
  • Feedwater heaters of many nuclear power plants have recently experienced severe wall thinning damage, which will increase as operating time progresses. Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle - installed downstream of the high pressure turbine extraction steam line - inside number 5A and 5B feedwater heaters. At that point, the extracted steam from the high pressure turbine is two phase fluid at high temperature, high pressure, and high speed. Since it flows in reverse direction after impinging the impingement baffle, the shell wall of the number 5 high pressure feedwater heater may be affected by flow-accelerated corrosion. This paper describes the comparisons between the numerical analysis results using the FLUENT code and the down scale experimental data in an effort to determine root causes of the shell wall thinning of the high pressure feedwater heaters. The numerical analysis and experimental data were also confirmed by actual wall thickness measured by an ultrasonic test.

  • PDF

Highly Sensitive and Selective Ethanol Sensors Using Magnesium doped Indium Oxide Hollow Spheres

  • Jo, Young-Moo;Lee, Chul-Soon;Wang, Rui;Park, Joon-Shik;Lee, Jong-Heun
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.4
    • /
    • pp.303-307
    • /
    • 2017
  • Pure $In_2O_3$, 0.5 and 1.0 wt% Mg doped $In_2O_3$ hollow spheres were synthesized by ultrasonic spray pyrolysis of a solution containing In-, Mg-nitrate and sucrose and their gas sensing characteristics to 5 ppm $C_2H_5OH$, p-xylene, toluene, and HCHO were measured at 250, 300 and $350^{\circ}C$. Although the addition of Mg decreases the specific surface area and the volume of meso-pores, the gas response (resistance ratio) of the 0.5 wt% Mg doped $In_2O_3$ hollow spheres to 5 ppm $C_2H_5OH$ at $350^{\circ}C$ (69.4) was significantly higher than that of the pure $In_2O_3$ hollow spheres (24.4). In addition, the Mg doped $In_2O_3$ hollow spheres showed the highest selectivity to $C_2H_5OH$. This was attributed to the dehydrogenation of $C_2H_5OH$ assisted by basic MgO into reactive $CH_3CHO$ and $H_2$.

Cooling Performance of Liquid CPU Cooler using Water/PG-based $Al_2O_3$ Nanofluids (물/PG-기반 $Al_2O_3$ 나노유체를 적용한 수냉식 CPU 쿨러의 냉각성능)

  • Park, Y.J.;Kim, K.H.;Lee, S.H.;Jang, S.P.
    • Journal of ILASS-Korea
    • /
    • v.19 no.1
    • /
    • pp.19-24
    • /
    • 2014
  • In this study, the cooling performance of a liquid CPU cooler using the water/propylene glycol(PG)-based $Al_2O_3$ nanofluids is experimentally investigated. Water/PG-based $Al_2O_3$ nanofluids are manufactured by two-step method with ultrasonic energy for 10 hours. The volume fractions of the nanofluids are 0.25% and 0.35%. Thermal conductivity and viscosity of the nanofluids are measured to theoretically predict the thermal performance of the liquid CPU cooler using performance factor. Performance factor results indicate that the cooling performance of the liquid CPU cooler can be improved using the manufactured nanofluids. To evaluate the cooling performance of the liquid CPU cooler experimentally, temperature differences between ambient air and heater are measured for base fluid and nanofluids respectively. Based on the results, it is shown that performance of the liquid CPU cooler using $Al_2O_3$ nanofluids is improved maximum up to 8.6% at 0.25 Vol.%.

Synthesis of (${Ba_{1.3}}{Al_{12}}{O_{19}}$:$Mn^{2+}$) by Ultrasonic Spray Pyrolysis and Effect of Precursor Type on Morphology and Photoluminescence (초음파 분무 열분해법에 의한 바륨 헥사알루미네이트(${Ba_{1.3}}{Al_{12}}{O_{19}}$:$Mn^{2+}$) 제조 및 전구체 종류에 따른 형성과 발광 특성)

  • 김경화;강윤찬;김창해;박희동;최세영
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.2
    • /
    • pp.173-178
    • /
    • 2001
  • 본 연구에서는 PDP용 녹색 형광체의 대안인 $Ba_{1.3}$A $l_{12}$ $O_{19}$:$Mn^{2+}$ 분말을 초음파 분무 열분해법으로 합성하였으며 활성제인 $Mn^{2+}$의 첨가량과 모체를 구성하는 바륨 및 알루미늄의 전구체 물질들의 조합을 변화시킴으로써 형광체 분말의 형태 및 발광특성을 조절하였다. 최적의 발광 휘도를 나타내는 $Mn^{2+}$의 농도는 0.25몰을 첨가하였을 때이며 녹색 발광 영역인 517nm에서 최대 발광 효율을 나타내었다. 바륨의 전구체 물질로는 초산염, 질산염, 염화물 및 수산화물을 사용하였으며 알루미늄 전구체 물질로는 질산염 및 염화물을 사용하였다. 전구체는 합성된 분말의 형상에 영향을 미치는데 구형을 유지하거나 혹은 뭉치거나 구형이 깨지는 등 전구체 조합에 따라 얻어지는 분말의 형태가 달라졌다. 합성된 형광체 분말들은 일반적인 고상 반응의 온도보다 낮은 열처리 온도인 140$0^{\circ}C$, 5시간 유지에서는 좋은 VUV 발광 특성을 가졌다. 또한 전구체의 조합은 형광체 발광 효율에도 영향을 미치는데 바륨과 알루미늄은 염화물을, 망간은 질산염을 사용하였을 때 가장 좋은 발광 휘도를 나타내었다.다.다.다.

  • PDF

A Study on the Fluid Mixing Analysis for Proving Shell Wall Thinning of a Feedwater Heater (급수가열기 동체 감육 현상 규명을 위한 유동해석 연구)

  • Kim, Kyung-Hoon;Hwang, Kyeong-Mo;Kim, Sang-Nyung
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.24-30
    • /
    • 2004
  • Feedwater flowing tube side of number 5 high pressure feedwatrr heaters was heated by extracting steam from high pressure turbine and draining water from moisture separators and number 6 high pressure feedwater heaters and supplied into steam generators. Because the extracting steam from the high pressure turbine is two phase fluid of high temperature, high pressure, and high speed and flows to inverse direction after impinging to impingement baffle. the shell wall of the number 5 high pressure feedwater heater may be affected by flow accelerated corrosion. On May 14, 1999, Point Beach Nuclear Plant (PBNP) with operating at full power experienced a steam leak from rupture of shell side of number 4B feedwater heater. Also, d domestic nuclear power plant experienced a severe wall thinning of shell side of number 5A and 5B feedwater heaters. This paper describes the fluid mixing analysis study using PHOENICS code in order to get at the root of the shell wall thinning of the feedwater heaters. The sections included in the fluid mixing analysis model are around the number 5h feedwater heater shell including the extracting pipeline. To identify the relation between the local velocities and wall thinning. the local velocities according to the analysis results were compared with the distribution of the shell wall thickness by ultrasonic test.

  • PDF