DOI QR코드

DOI QR Code

Preparation of Micro- and Submicron-Particles of a Poorly Water-Soluble Antifungal Drug Using Supercritical Fluid Process

초임계유체공정을 이용한 난용성 항진균제의 미세입자 제조

  • Kim, Seok-Yun (Department of Chemical and Biochemical Engineering, The University of Suwon) ;
  • Lee, Jung-Min (Department of Chemical and Biochemical Engineering, The University of Suwon) ;
  • Won, Byoung- Hyun (Department of Chemical and Biochemical Engineering, The University of Suwon) ;
  • Jung, In-Il (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Ryu, Jong-Hoon (Department of Chemical and Biochemical Engineering, The University of Suwon) ;
  • Lim, Gio-Bin (Department of Chemical and Biochemical Engineering, The University of Suwon)
  • 김석윤 (수원대학교 공과대학 화공생명공학과) ;
  • 이정민 (수원대학교 공과대학 화공생명공학과) ;
  • 원병현 (수원대학교 공과대학 화공생명공학과) ;
  • 정인일 (연세대학교 공과대학 화공생명공학과) ;
  • 유종훈 (수원대학교 공과대학 화공생명공학과) ;
  • 임교빈 (수원대학교 공과대학 화공생명공학과)
  • Received : 2010.04.26
  • Accepted : 2010.06.24
  • Published : 2010.06.30

Abstract

In this study, micro- and submicron particles of itraconazole, a poorly water-soluble antifungal drug, were prepared for improving its aqueous solubility using an ultrasound-assisted supercritical fluid technique, called SAS-EM. The SAS-EM process used in our experiments was different from the conventional SAS-EM in that the ultrasound was applied directly to the spray nozzle. The effect of the ultrasonic power, temperature, and solvent on the formation of itraconazole particles were investigated. Smaller particles were obtained through our SAS-EM process compared with the ASES process, and the mean particle size decreased as the ultrasonic power increased. Our experimental results confirmed that the ultrasound-assisted supercritical fluid process is an efficient method for producing ultrafine particles.

본 연구에서는 초음파가 결합된 초임계유체 입자 제조 기술인 SAS-EM 공정을 이용하여 난용성 항진균제인 이트라코나졸의 미세입자를 제조하였다. 실험에 사용된 SAS-EM 장치의 경우 초음파가 분사노즐에 직접 적용되었다는 점에서 기존의 SAS-EM 공정과 차이가 있으며, 초음파 세기, 공정온도, 용매 등의 여러 공정변수가 미세입자 형성에 미치는 영향을 고찰하였다. 초음파의 세기가 증가할수록 더 작은 크기를 가지는 입자의 생성률이 증가하였으며, SAS-EM 공정으로 제조된 미세입자도 원시료와 마찬가지로 결정구조를 가짐을 확인하였다. 초음파의 영향을 고찰하기 위해 기존의 초임계 ASES 공정과 비교하였으며, SAS-EM 공정에 의해 크기가 더 작은 입자가 형성됨을 확인하였다.

Keywords

References

  1. York, P., "Strategies for Particle Design Using Supercritical Fluid Technologies," Pharm. Sci. Technol. Today, 2(11), 430-440 (1999). https://doi.org/10.1016/S1461-5347(99)00209-6
  2. Roberts, C. J. and Debenedetti, P. G., "Engineering Pharmaceutical Stability with Amorphous Solids," AIChE .J., 48(6), 1140-1144 (2002). https://doi.org/10.1002/aic.690480602
  3. Thote, A. J., and Gupta, R. B., "Formation of Nanoparticles of a Hydrophilic Drug Using Supercritical Carbon Dioxide and Microencapsulation for Sustained Release," Nanomedicine: Nanotech. BioI. Med., 1(1), 85-90 (2005). https://doi.org/10.1016/j.nano.2004.12.001
  4. Chattopadhyay, p., and Gupta, R. B., "Production of Antibiotic Nanoparticles Using Supercritical $CO_2$ as Antisolvent with Enhanced Mass Transfer," Ind. Eng. Chem. Res., 40(16), 3530-3539 (2001). https://doi.org/10.1021/ie010040r
  5. Chattopadhyay, P., and Gupta, R. B., "Protein Nanoparticles Formation by Supercritical Antisolvent with Enhanced Mass Transfer," AIChE .J., 48(2), 235-244 (2002). https://doi.org/10.1002/aic.690480207
  6. Gupta, R. B., and Chattopadhyay, P., "Method of Forming Nanoparticles and Microparticles of Controllable Size Uing Supercritical Fluids and Ultrasound," US Patent No. 6,620,351 (2003).
  7. Lee, L. Y., Wang, C. H., and Smith, K. A., "Supercritical Antisolvent Production of Biodegradable Micro- and Nanoparticles for Controlled Delivery of Paclitaxel," J. Control. Release, 125(2), 96-106 (2008). https://doi.org/10.1016/j.jconrel.2007.10.002
  8. Chattopadhyay, P. and Gupta, R. B., "Production of Griseofulvin Nanoparticles Using Supercritical $CO_2$ Antisolvent with Enhanced Mass Transfer," Int. J. Pharm., 228(1-2), 19-31 (2001). https://doi.org/10.1016/S0378-5173(01)00803-1
  9. Fromtling, R. A., "Recent Trends in the Discovery, Development and Evaluation of Antifungal Agents," J. R. Prous Science Publishers, 223 (1987).
  10. Carretier, E., Badens, E., Guichardon, P., Boutin, O., and Charbit, G., "Hydrodynamics of Supercritical Antisolvent Precipitation: Characterization and Influence on Particle Morphology," Ind. End. Chem. Res., 42(2), 331-338 (2003). https://doi.org/10.1021/ie020439v
  11. Jones, A. G., "Crystallization Process Systems," ButterworthHeinemann, 137 (2002).
  12. Shekunov, B. Y., Baldyga, J., and York, P., "Particle Formation by Mixing with Supercritical Antisolvent at High Reynolds Numbers," Chem. Eng. Sci., 56(7), 2421-2433 (2001). https://doi.org/10.1016/S0009-2509(00)00443-7
  13. Lang, R. J., "Ultrasonic Atomization of Liquids," J. Acoust. Soc. Am., 34, 6-8 (1962). https://doi.org/10.1121/1.1909020
  14. Topp, M. N., "Ultrasonic Atomization-a Photographic Study of the Mechanism of Disintegration," J. Aeros. Sci., 4(1), 17-25 (1973). https://doi.org/10.1016/0021-8502(73)90113-4
  15. Rnjan, R., and Pandit, A. B., "Correlations to Predict Droplet Size in Ultrasonic Atomisation," Ultrasonics, 39(4), 235-255 (2001). https://doi.org/10.1016/S0041-624X(01)00054-3
  16. Avvaru, B., Patil, M. N., Gogate, P. R., and Pandit, A. B., "Ultrasonic atomization: Effect of Liquid Phase Properties," Ultrasonics, 44(2), 146-158 (2006). https://doi.org/10.1016/j.ultras.2005.09.003
  17. Liversidge, E. M., Liversidge, G. G., and Cooper, E. R., ''Nanosizing: a Formulation Approach for Poorly-Water- Soluble Compounds," Eur. J. Pharm. Sci. 18(2), 113-120 (2003). https://doi.org/10.1016/S0928-0987(02)00251-8
  18. Hu. J., Johnston, K. P., and Williams III, R. O., "Spray Freezing into Liquid (SFL) Particle Engineering Technology to Enhance Dissolution of Poorly Water Soluble Drugs: Organic Solvent Versus Organic/Aqueous Co-Solvent Systems," Eur. J. Pharm. BioPharm. 20(3), 295-303 (2003).
  19. Wiliams III R. O., Johnston, K. P., Young, T. J., Rogers, T. L., Z. Y., and Hu, J., "Process for Production of Nanoparticles and Microparticles by Spray Freezing into Liquid," US Patent No. 6,862,890 (2005).
  20. Johnston, K. P., Willams Ill, R. O., Young, T. J., T. L., and Xiaoxia, C., "Preparation of Drug Particles Using Evaporation Precipitation into Aqueous Solutions," US Patent No. 6,756,062 (2004).
  21. Sheehan, D. J., Hitchcock, C. A., and Sibley, C. M., "Current and Emerging Azole Antifungal Agents," Clin. Microbiol. Rev., 12(1), 40-79 (1999).
  22. Warnock, D. W., "Itraconazolc and Fluconazole: New Drugs for Deep Fungal Infection," J. Antimicrob. Chemoth., 24, 275-280 (1989). https://doi.org/10.1093/jac/24.3.275
  23. Barrett, A. M., Dehqhani, F., and Foster, N. R., "Increasing the Dissolution Rate of Itraconazole Processed by Gas Antisolvent Techniques Using Polyethylene Glycol as a Carrier," Pharm. Res. 25(6), 1274-1289 (2008). https://doi.org/10.1007/s11095-007-9479-x
  24. Werling, J. O., and Debenedetti, P. G., "Numerical Modeling of Mass Transfer in the Supercritical Antisolvent Process: Miscible Conditions," J. Supercrit. Fluids, 18(1), 11-24 (2000). https://doi.org/10.1016/S0896-8446(00)00054-1
  25. Martin, A., and Cocero, M. J., "Numerical Modeling of Jet Hydrodynamics, Mass Ttransfer, and Crystallization Kinetics in the Supercritical Antisolvent (SAS) Process," J. Supercrit. Fluids, 32(1-3), 203-219 (2004). https://doi.org/10.1016/j.supflu.2004.02.009
  26. Kim, Y. H., Sioutas, C., Fine, P., and Shing, K. S., "Effect of Albumin on Physical Characteristics of Dru Particles Produced by Supercritical Fluid Technology," Powder Technol., 182(3), 354-363 (2008). https://doi.org/10.1016/j.powtec.2007.06.008
  27. Reverchon, E., Della, P. G., and Favilene, M. G., "Process Parameters and Morphology in Amoxicillin Micro and Submicro Particles Generation by Supercritical Antisolvent Precipitation," J. Supercrit. Fluids, 17(3), 239-248 (2000). https://doi.org/10.1016/S0896-8446(00)00045-0