• 제목/요약/키워드: ultrasonic radiation

검색결과 133건 처리시간 0.02초

액체유도체의 절연특성에 미치는 초음파의 영향 (Ultransonic Effect on the Break-Down Characteristics of Liquid Dielectrics)

  • 전춘생;김홍근;홍봉식
    • 전기의세계
    • /
    • 제26권4호
    • /
    • pp.61-67
    • /
    • 1977
  • This paper treats the Ultrasonic effects on the break down characteristics of Liquid Dielectric Material 1) Relative Dielectric constant, Es of Liquid Dielectric Material at a constant temperature decreases in proportion to the irradiated time of Ultrasonic radiation and its intensity, and reaches to a certain saturated value. The saturated value varies with the intensity of Ultrasonic radiation. 2) Power factor of Liquid Dielectric Material at a constant temperature increases in proportion tothe irradiated time of Ultrasonic radiation and its intensity, and reaches to a certain saturated value. The saturated value varies with the intensity of Ultrasonic radiation. 3) Relative resistance of Liquid Dielectric Material at a constant temperature decrease with the irradiated time of Ultrasonic radiation, but the effect of its intensity is very irregular. 4) Break-down strength of Liquid Dielectric Material, at a constant temperature decreases with the irradiated time of Ultrasonic radiation and its intensity, and then reaches to a saturated value.

  • PDF

정방형 방사면을 갖는 초음파 진동자의 자기방사임피던스 측정 (Measurement of the self-radiation impedance of an ultrasonic transducer with a square vibrating surface)

  • 김정순;김무준
    • 한국음향학회지
    • /
    • 제36권2호
    • /
    • pp.108-114
    • /
    • 2017
  • 수중 초음파 탐지 시스템에서 배열 진동소자로 사용되는 정방형의 방사면을 갖는 초음파 트랜스듀서의 자기 방사임피던스를 실험적으로 해석하였다. 7개의 진동수가 서로 다른 란주반형 진동자를 제작하여 파수와 진동자의 한변의 길이의 곱인 ka의 값이 1~3의 범위에 대해서 방사리액턴스 및 방사저항을 측정하였다. 이 결과를 수열을 이용한 방사임피던스의 이론계산 결과와 비교하여 본 연구에서 수행한 실험방법의 유효성을 확인 하였고 정방형의 방사면에 대한 방사임피던스의 변화경향을 실험적으로 확인할 수 있었다.

단일 매체에서의 평면 초음파 탐촉자의 방사 음장 모델링 기법 (Modeling of Radiation Beams from Ultrasonic Transducers in a Single Medium)

  • 송성진;김학준
    • 비파괴검사학회지
    • /
    • 제20권2호
    • /
    • pp.91-101
    • /
    • 2000
  • 초음파 탐촉자로부터 방사된 음장을 모델링하는 것은 초음파 측정 모델을 구성하는 첫 번째 단계이며, 그 정확도를 결정짓는 핵심 요소이기 때문에 지금까지 다양한 연구가 진행되었다. 본 논문에서는 지금까지 제안된 다양한 기법 중에서 현재 널리 사용되고 있는 Rayleigh-Sommerfeld 적분 모델, 경계회절파모델(boundary diffraction wave model), 가장자리요소모델(edge element model)에 대해 간략하게 논의하고, 이 세가지 모델을 적용하여 평면 원형 및 사각형 초음파 탐촉자의 방사 음장을 계산하고, 각 기법의 정확성과 계산 효율을 비교하였다.

  • PDF

마이크로믹서에의 응용을 위한 batch type 초음파믹서의 혼합 상태 가시화 (Visualization for the mixing state of a batch-type ultrasonic mixer for its application to the microdevice)

  • 허필우;윤의수;고광식
    • 센서학회지
    • /
    • 제14권1호
    • /
    • pp.47-51
    • /
    • 2005
  • An active ${\mu}$-mixer is important in Bio-MEMS and ${\mu}$-TAS. The mixing state depends on some kinds of factors including the intensity of ultrasonic radiation. We have visualized the mixing state of the mixing chamber with radiation time and presented the influence of the driving voltage in this research. It will be possible to compare the performances of the ultrasonic radiation parts used in the active ${\mu}$-mixer using this method.

Effects of Ultrasonic Irradiation on Physical Properties of Silica/PEG Hybrids

  • Jung, Hwa-Young;Gupta, Ravindra K.;Lee, Sang-Ki;Whang, Chin-Myung
    • 한국세라믹학회지
    • /
    • 제39권2호
    • /
    • pp.113-119
    • /
    • 2002
  • The effect of ultrasonic radiation is reported for silica-poly(ethylene glycol) system prepared without the solvent using sol-gel processing by varying various parameters such as ultrasonic irradiation time, PEG content and HCl/TEOS molar ratio. The property of sonogel is compared with classic gel which has been prepared with ethanol as a solvent by traditional sol-gel processing. SEM, BET, DTA-TGA, density and Vickers hardness measurements are carried out for analyzing the samples. The gelation time is found strongly dependent on radiation time, PEG content and pH value, and has been discussed on the basis of existing theories. The $SiO_2-10$ & 20 wt% PEG sonogel exhibited superior optical, physical and gel properties as compared to the classic gel, hence, found suitable for device applications. The ultrasonic radiation increased the density and surface area, and also reduced the pore size which is well supported by the shift in the peak of DTA curve. The DTA thermogram was found similar to that of pure silica gel.

자외성 페라이트 진동자의 지향특성에 대하여 (Radiation Pattern of the Vibrox Transducer)

  • 신형일
    • 한국항해학회지
    • /
    • 제4권2호
    • /
    • pp.1-6
    • /
    • 1980
  • Computer simulation results on the radiation pattern of an ultrasonic beam by the plurall arrangement of the transducers were reported by Sin (1979). This paper describes on the measurement of radiation pattern in case of one vibrox transducer and two vibrox transducers by varying the interval between the transducers. The measured results obtained are as follows; 1. Radiation wave of ultrasonic transducer is propagated to diffuse with spherical wave from center of transducer. 2. In case of one vibrox transducer, the greater the length of transducer, the sharper becomes the radiation pattern. 3. In case of two vibrox transducers, the maine lobe is revealed at the center of two transducers, it is shown difficult to make control freely of radiation pattern by varying merely the interval of transducers.

  • PDF

초음파 이용 거리측정을 위한 센서 개발에 관한 연구 (Study on the Development of Sensors for Distance Measure Using Ultrasonic)

  • 박근철;이승희;박창수;김동원;김원택;전계록
    • 센서학회지
    • /
    • 제23권1호
    • /
    • pp.46-50
    • /
    • 2014
  • In this paper, we report a novel algorithm based on phase displacement, which supplements conventional TOF methods for distance measurement using an ultrasonic wave. The proposed algorithm roughly measures the distance between the transmission part and the receiving part by using the initial TOF. Thereafter, the precise distance is determined by measuring the phase displacement value between the synchronizing transmission signal and the signal obtained at the receiving end. A distance measurement experiment using a micrometer was performed to verify the accuracy of the ultrasonic wave sensor system. We found that the mean errors from the one adopting the distance measurement algorithm based on phase displacement varied from a minimum of 0.03 mm to a maximum of 0.09 mm. In addition, the standard deviation varied from a minimum of 0.04 mm to a maximum of 0.07 mm, thus giving a precision of ${\pm}0.1$ mm.

Modeling Phased Array Ultrasonic Testing of a Flat-Bottom Hole in a Single Medium

  • Park, Joon-Soo;Kim, Hak-Joon;Song, Sung-Jin;Seong, Un-Hak;Kang, Suk-Chull;Choi, Young-Hwan
    • 비파괴검사학회지
    • /
    • 제25권6호
    • /
    • pp.467-474
    • /
    • 2005
  • The expanded multi-Gaussian beam model has recently been developed that can calculate the radiation beam field from a single, rectangular transducer with great computational efficiency. In this study, this model is adopted to calculate the radiation beam field for a phased array transducer with various time delays to achieve steering and/or focusing. The calculation beam fields are compared to those obtained by well known Rayleigh-Sommerfeld integral that provides the exact solution in order to explore the validity of the expanded multi-Gaussian beam model And then, this study proposes a complete ultrasonic measurement model including the expanded beam model, far-field scattering model and system efficiency, Using the proposed model, phased array ultrasonic testing signals for a flat-bottomed hole with/without focusing were performed.

정재초음파를 이용한 입자제어 시스템의 유한요소해석 (Finite Element Analysis of a Particle Manipulation System Using Ultrasonic Standing Wave)

  • 조승현;박재하;안봉영;김기복
    • 한국소음진동공학회논문집
    • /
    • 제20권1호
    • /
    • pp.3-9
    • /
    • 2010
  • Micro particles in fluid can be manipulated by using ultrasonic standing wave since the ultrasound makes particles move by means of its acoustic radiation force. This work concerns the micro particle manipulation system using ultrasonic standing wave which consists of a microchannel, a reflector, and an ultrasonic transduer. In the present system, the effects of the structural elements should be carefully considered to comprehend the system and find the optimal operational condition. In this investigation, finite element analysis was employed to analyze the system. Some interesting characteristics on the reflector thickness, the channel width, and the operational frequency were observed. Several experimental results were compared with the analytic results. Consequently, this work solidifies the importance of those system parameters and reveals the possibility of various applications of the particle manipulation using ultrasonic standing wave.

정재초음파를 이용한 입자제어 시스템의 유한요소해석 (Finite Element Analysis of a Particle Manipulation System Using Ultrasonic Standing Wave)

  • 조승현;박재하;안봉영;김기복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.565-570
    • /
    • 2009
  • Micro particles in fluid can be manipulated by using ultrasonic standing wave since the ultrasound makes particles move by means of its acoustic radiation force. This work concerns the micro particle manipulation system using ultrasonic standing wave which consists of a microchannel, an adaptive layer, a reflector, and an ultrasonic transduer. In the present system, the effects of the structural elements should be carefully considered to comprehend the system and find the optimal operational condition. In this investigation, finite element analysis was employed to analyze the system. Some interesting characteristics on the reflector thickness, the channel width, and the operational frequency were observed. Several experimental results were compared with the analytic results. Consequently, this work solidifies the importance of those system parameters and reveals the possibility of various applications of the particle manipulation using ultrasonic standing wave.

  • PDF