• 제목/요약/키워드: ultrafine-grained

검색결과 50건 처리시간 0.018초

High performance ultrafine-grained Ti-Fe-based alloys with multiple length-scale phases

  • Zhang, Lai-Chang
    • Advances in materials Research
    • /
    • 제1권1호
    • /
    • pp.13-29
    • /
    • 2012
  • In order to simultaneously enhance the strength and plasticity in nanostructured / ultrafine-grained alloys, a strategy of introducing multiple length scales into microstructure (or called bimodal composite microstructure) has been developed recently. This paper presents a brief overview of the alloy developement and the mechanical behavior of ultrafine-grained Ti-Fe-based alloys with different length-scale phases, i.e., micrometer-sized primary phases (dendrites or eutectic) embedded in an ultrafine-grained eutectic matrix. These ultrafine-grained titanium bimodal composites could be directly obtained through a simple single-step solidification process. The as-prepared composites exhibit superior mechanical properties, including high strength of 2000-2700 MPa, large plasticity up to 15-20% and high specific strength. Plastic deformation of the ultrafine-grained titanium bimodal composites occurs through a combination of dislocation-based slip in the nano-/ultrafine scale matrix and constraint multiple shear banding around the micrometer-sized primary phase. The microstructural charactersitcs associated to the mechanical behaivor have been detailed discussed.

저탄소 마르텐사이트 강의 냉간압연과 온간압연을 통한 미세조직 개질

  • 이종철;강의구;이중원;오창석;김성준;남원종
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.274-277
    • /
    • 2009
  • There have been a number of works on manufacturing ultrafine grained steels with average ferrite grain sizes of smaller than a few micrometers to develop beneficial high strength steels. Among microstructures in low carbon steels, lath martensite is known to be useful to produce an ultrafine grained ferrite matrix and finely globular cementite particle. Thus, severe plastic deformation and subsequent annealing at lower temperature of lath martensite would become an effective way to produce ultrafine grained steels. However, most ultrafine grained steels exhibited a total elongation of a few per cent in tensile tests. Such a defect is one of the primary factors restricting the potential applications of ultrafine grained steels. Therefore, the improvement of the strength-elongation balance is required for the application of ultrafine grained structural steels. In this study, the effect of deformation temperatures on microstructure, such as ferrite grain size and the distribution of cementite particles, and mechanical property of lath martensite steels, was investigated. Specimens were fabricated through cold rolling or warm rolling and subsequent annealing.

  • PDF

Fatigue Crack Growth Behavior in Ultrafine Grained Low Carbon Steel

  • Kim, Ho-Kyung;Park, Myung-Il;Chung, Chin-Sung;Shin, Dong-Hyuk
    • Journal of Mechanical Science and Technology
    • /
    • 제16권10호
    • /
    • pp.1246-1252
    • /
    • 2002
  • Ultrafine grained (UFG) low carbon (0.15 wt.% C) steel produced by equal channel angula. pressing (ECAP) was tested for investigating the effect of load ratio on the fatigue crack growth rate. Fatigue crack growth resistance and threshold of UFG steel were lower than that of asreceived coarse grained steel. It was attributed to the less tortuous crack path. The UFG steel exhibited slightly higher crack growth rates and a lower △Kth with an increase of R ratio. The R ratio effect on crack growth rates and △Kth was basically indistinguishable at lower load ratio (R >0.3), compared to other alloys, which indicates that contribution of the crack closure vanishes. The crack growth rate curve for UFG steel exhibited a longer linear extension to the lower growth rate regime than that for the coarse grained as-received steel.

ECAP 강소성 가공에 의한 구조재료 초미세립화 (Fabrication of Ultrafine Grained Structure Materials by Equal Channel Angular Pressing)

  • 김우겸;안정용;신동혁;박경태;고영건;이종수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.126-129
    • /
    • 2005
  • Microstructures and tensile properties of low carbon steels, 5083 Al alloy and Ti-6Al-4V alloy fabricated by equal channel angular pressing (ECAP) were examined in order to understand their deformation response associated with a formation of an ultrafine grained (UFG) structure. Room temperature tensile properties of UFG low carbon ferrite/pearlite steels and UFG ferrite/martensite dual phase steel were compared for exploring a feasibility enhancing the strain hardening capability of UFG materials. In addition, low temperature and high strain rate superplasticity of the two grades of the UFG 5083 Al alloy, and Ti-6Al-4V alloy were presented. From the analysis of a series of experiments, it was found that UFG materials exhibited the enhanced mechanical properties compared to coarse grained counterparts.

  • PDF

ECAP가공에 의한 초미세립 순수 티타늄의 피로 특성 향상 (Improvement of Fatigue Properties in Ultrafine Grained Pure Ti after ECAP(Equal Channel Angular Pressing))

  • 이영인;박진호;최덕호;최명일;김호경
    • 대한기계학회논문집A
    • /
    • 제29권11호
    • /
    • pp.1494-1502
    • /
    • 2005
  • Fatigue life and notch sensitivity of the ultrafine grained pure Ti produced by ECAP was investigated. The ECAPed sample with the true strain of 460$\%$ showed near equiaxed grains with an average size of about 0.3 $\mu$m. After ECAP, the ultimate tensile strength was increased by 60$\%$, while the tensile ductility was decreased by 31$\%$. The ECAPed ultrafine grained pure Ti samples showed high notch sensitivity and significant improvement of high cycle fatigue limit by a factor of 1.67. The ECAPed samples also show high notch sensitivity (K$_{f}$/K$_{t}$ = 0.96). It can be concluded that ECAP is the effective process for achieving high fatigue strength in Ti by increasing its tensile strength through grain refinement

Nanocrystalline and Ultrafine Grained Materials by Mechanical Alloying

  • Wang, Erde;Hu, Lianxi
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.829-830
    • /
    • 2006
  • Recent research at Harbin Institute of Technology on the synthesis of nanocrystalline and untrafine grained materials by mechanical alloying/milling is reviewed. Examples of the materials include aluminum alloy, copper alloy, magnesium-based hydrogen storage material, and $Nd_2Fe_{14}B/{\alpha}-Fe$ magnetic nanocomposite. Details of the processes of mechanical alloying and consolidation of the mechanically alloyed nanocrystalline powder materials are presented. The microstructure characteristics and properties of the synthesized materials are addressed.

  • PDF

초미세 결정립 TRIP 강의 미세조직 변화 (Microstructural evolution of ultrafine grained TRIP low-carbon steel)

  • 이철원;고영건;남궁승;신동혁
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.263-266
    • /
    • 2009
  • Transformation induced plasticity (TRIP) steel consisting of ferrite, austenite, and bainite phases was regarded as an excellent candidate for automotive applications due to the good combination of ductility and strength. The aim of the present study was to understand the microstructural characteristics of ultrafine grained (UFG) TRIP low-carbon steel fabricated via equal channel angular pressing accompanied with intercritical- and isothermal-annealing treatments. When compared to coarse grained counterpart, only the volume fraction of austenite phase in UFG TRIP steel remained unchanged, but all other microstructural variables such as size and morphology were different. It was found that UFG TRIP steel showed the homogeneous distribution of each constituent phase, which was discussed in terms of annealing treatments done in this study.

  • PDF

Ultrafine Grained Steels Processed by Equal Channel Angular Pressing

  • Shin, Dong Hyuk
    • Corrosion Science and Technology
    • /
    • 제5권1호
    • /
    • pp.23-26
    • /
    • 2006
  • Recent development of ultrafine grained (UFG) low carbon steels by using equal channel angular pressing (ECAP) and their room temperature tensile properties are reviewed, focusing on the strategies overcoming their inherent mechanical drawbacks. In addition to ferrite grain refinement, when proper post heat treatments are imposed, carbon atom dissolution from pearlitic cementite during ECAP can be utilized for microstructural modification such as uniform distribution of nano-sized cementite particles or microalloying element carbides inside UFG ferrite grains and fabrication of UFG ferrite/martensite dual phase steel. The utilization of nano-sized particles is effective on improving thermal stability of UFG low carbon ferrite/pearlite steel but less effective on improving its tensile properties. By contrast, UFG ferrite/martensite dual phase steel exhibits an excellent combination of ultrahigh strength, large uniform elongation and extensive strain hardenability.

초미세립 Cu의 소성변형거동에 미치는 결정립 형상의 영향 (Effects of Grain Morphology on Plastic Flow of Ultrafine Grained OFHC Cu)

  • 박이주;김형원;이종수;박경태
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.263-265
    • /
    • 2009
  • In this study, ultrafine grained (UFG) oxygen free high conductivity copper (OFHC Cu) having two different grain morphologies, one the severely elongated and the other the equiaxed, was prepared by equal channel angular pressing (ECAP) with routes A and $B_c$, respectively. The results of quasi-static tensile tests at $10^{-1}\;s^{-1}$ and $1\;s^{-1}$ and dynamic compression tests at $10^3\;s^{-1}$ order revealed that the equiaxed UFG Cu exhibited higher strength and less ductility compared to the elongated one. The difference of the plastic flow characteristics between the two were rationalized by considering their dislocation mean free length based on the orientation relationship between the possible slip planes and the loading direction.

  • PDF

ECAP 가공에 의해 제조된 초미세립 OFHC Cu 봉재의 미세조직 및 기계적 특성의 균질성 (Homogeneity of Microstructure and Mechanical Properties of Ultrafine Grained OFHC Cu Bars Processed by ECAP)

  • 지정훈;박이주;김형원;황시우;이종수;박경태
    • 대한금속재료학회지
    • /
    • 제49권6호
    • /
    • pp.474-487
    • /
    • 2011
  • Bars of OFHC Cu with the diameter of 45 mm were processed by equal channel angular pressing up to 16 passes via route $B_c$, and homogeneity of their microstructures and mechanical properties was examined at every four passes which develop the equiaxed ultrafine grains. In general, overall hardness, yield strength and tensile strength increased by 3, 7, and 2 times respectively compared with those of unECAPed sample. Cross-sectional hardness exhibited a concentric distribution. Hardness was the highest at the center of bar and it decreased gradually from center to surface. After 16 passes, overall hardness decreased due to recovery and partial recrystallization. Regardless of the number of passage, yield strength and tensile strength were quite uniform at all positions, but elongation showed some degree of scattering. At 4 passes, coarse and ultrafine grains coexisted at all positions. After 4 passes, uniform equiaxed ultrafine grains were obtained at the center, while uniform elongated ultrafine grains were manifested at the upper half position. At the lower half position, grains were equiaxed but its size were inhomogeneous. It was found that inhomogeneity of grain morphology and grain size distribution at different positions are to be attributed to scattering in elongation but they did not affect strength. The present results reveal the high potential of practical application of equal channel angular pressing on fabrication of large-sized ultrafine grained bars with quite homogeneous mechanical properties.