• 제목/요약/키워드: ultra-precision

검색결과 923건 처리시간 0.022초

다구찌 방법에 의한 12인치 웨이퍼 폴리싱의 가공특성에 관한 연구 (A Study on the Optimal Machining of 12 inch Wafer Polishing by Taguchi Method)

  • 최웅걸;최승건;신현정;이은상
    • 한국기계가공학회지
    • /
    • 제11권6호
    • /
    • pp.48-54
    • /
    • 2012
  • In recent years, developments in the semiconductor and electronic industries have brought a rapid increase in the use of large size silicon. However, for many companies, it is hard to produce 400mm or 450mm wafers, because of excesive funds for exchange the equipments. Therefore, it is necessary to investigate 300mm wafer to obtain a better efficiency and a good property rate. Polishing is one of the important methods in manufacturing of Si wafers and in thinning of completed device wafers. This research investigated the surface characteristics that apply variable machining conditions and Taguchi Method was used to obtain more flexible and optimal condition. In this study, the machining conditions have head speed, oscillation speed and polishing time. By using optimum condition, it achieves a ultra precision mirror like surface.

유리렌즈 성형용 초경합금의 Pt 박막의 특성에 관한 연구 (Characteristics of Pt thin films on WC for glass lens molding)

  • 박순섭;이기용;원종호
    • 한국기계가공학회지
    • /
    • 제8권3호
    • /
    • pp.62-67
    • /
    • 2009
  • Pt thin films on Cr or Ti interlayer were deposited onto a tungsten carbide(WC) substrate by the ion beam assisted DC magnetron sputtering. The various atomic percent of Cr and Ti underneath of the Pt films were prepared to examine the total thin film characteristics. The microstructure and surface analysis of the specimen were conducted by using the SEM, XRD and AFM. Mechanical properties such as hardness and adhesion strength of Pt thin film also were examined. The interlayer of pure Ti was formed with 40 nm thickness while that of pure Cr was done with 50 nm as standard reference. The growth rate of either Cr or Ti thin film was almost same under the same deposition conditions. The SEM images showed that anisotropic grain of Pt thin films consisting of dense columnar structures irrespectively grew from the different target compositions. The values of hardness and adhesion strength of Cr/Pt thin film coated on a WC substrate were higher than those of Ti/Pt thin film.

  • PDF

Relationship between Surface Sag Error and Optical Power of Progressive Addition Lens

  • Liu, Zhiying;Li, Dan
    • Current Optics and Photonics
    • /
    • 제1권5호
    • /
    • pp.538-543
    • /
    • 2017
  • Progressive addition lenses (PAL) have very wide application in the modern glasses market. The unique progressive surface can make a lens have progressive refractive power, which can meet the human eye's different needs for distance-vision and near-vision. According to the national glasses fabrication standard, the difference between actual optical power after fabrication and nominal design value should be less than 0.1D over the lens effective area. The optical power distribution of PAL is determined directly by the surface. Consequently, the surface processing accuracy requirement is proposed. Beginning from the surface expressions of progressive addition lenses, the relationship equations between the surface sag and optical power distribution are derived. They are demonstrated through tolerance analysis and test of an example progressive addition lens with addition of 2.09D (5.46D-7.55D). The example addition surface is fabricated under given accuracy by a single-point diamond ultra-precision machine. The optical power of the PAL example is tested with a focal-meter after fabrication. The optical power addition difference between test result and design nominal value is 0.09D, which is less than 0.1D. The derived relationship between the surface error and optical power is verified from the PAL example simulation and test result. It can provide theoretical tolerance analysis proof for the PAL surface fabricating process.

대형 비구면의 초정밀 가공을 위한 자동무수차점 방식의 널 렌즈 설계 및 측정 정밀도의 한계에 관한 연구 (A study for null lens design of autostigmatic type and the limitation of measurement accuracy for ultra precision manufacturing of large aspherical surface)

  • 김길선;임천석
    • 한국광학회지
    • /
    • 제16권1호
    • /
    • pp.71-78
    • /
    • 2005
  • 대형 비구면의 측정을 위하여 자동무수차점 방식의 2매 구성 널 렌즈를 설계하였고, 제작과 정렬 오차에 따른 측정 정밀도의 한계를 이론적으로 분석해 보았다. 측정 정밀도의 한계를 결정짓는 주요한 공차 요소는 널 렌즈면의 불규칙도(irregularity)임을 확인하였으며, 불규칙도의 가공 정도에 따라 5λ/100∼4λ/1000 정도까지의 신뢰할 수 있는 측정 정밀도가 한정지어졌다. 이로써 실제의 정렬 오차 및 널 렌즈 제작오차까지 고려하여 신뢰할 수 있는 정밀도 한계를 제시할 수 있었다.

MR fluid를 이용한 알루미늄 표면의 초정밀 연마 방법 (A Study on the Ultra Precision Polishing Method of Aluminum Surface Using MR Fluids)

  • 임동욱;김병찬;홍광표;조명우
    • Design & Manufacturing
    • /
    • 제11권2호
    • /
    • pp.20-24
    • /
    • 2017
  • Recent industrial developments are constantly advancing, and rapid technological development is demanding high technology level in related fields. The need for polishing is increasing even more to improve quality. In order to improve the surface quality, the final finishing process or polishing process is a very important part. Research on super precise polishing method using MR fluid is actively being carried out in domestic and foreign countries. Fine magnetic abrasive grains are aligned in the direction of a magnetic force line formed by a magnetic field and serve as a brush to polish a metal surface. This method has the advantage that the shape of the tool is not fixed and is not affected by the shape of the workpiece or the machining area. We will design the electromagnets for the MR polish polishing system and apply the magnetic field analysis using the magnetic field analysis program (ANSYS). The data obtained through this process suggests an efficient method to increase the magnetic flux density important for polishing. We will investigate the influence of the Al6061-T6 specimen on the surface of the MR polishing machine based on the optimized design.

MR Fluid Polishing을 이용한 Co-Cr-Mo alloy의 초정밀 연마 방법 (A Study on The Ultra-precision Polishing Method of Co-Cr-Mo alloy Using MR Fluid Polishing)

  • 신봉철;김병찬;송기혁;조명우
    • Design & Manufacturing
    • /
    • 제11권3호
    • /
    • pp.8-12
    • /
    • 2017
  • In general, metallic bio-materials is more widely used in solid tissue like bone or tooth than flexible tissue such as skin or muscle. Especially, Cobalt Chrome Molybdenum(Co-Cr-Mo), which is used in tooth surgery, has a great corrosion resistance. Because this bio-material is non-toxic in human body, and has a bio-compatibility that the vital reaction is not occurred with tissue in body. However the chemical reaction is occurred by fatal matter that deteriorate the property of material surface in conventional polishing, and it can affect to fatal disease in human body or decrease the material properties such as hardness, yield strength or bio-compatibility. This surface in poor condition can cause development of corrosion or bacteria. In this study, MR fluid polishing is used to minimize the scratch, pit or surface flaws generated in conventional polishing. Surface roughness is measured according to the polishing condition to obtain fine surface condition.

마이크로 패턴 성형을 위한 인서트 코어 적용 µ-PIM 표준금형 개발에 관한 연구 (Development of µ-PIM standard mold with exchangable insert core in order to manufacture micro pattern)

  • 박치열;서찬열;김용대
    • Design & Manufacturing
    • /
    • 제11권3호
    • /
    • pp.29-34
    • /
    • 2017
  • Increased demand for parts with micro-pattern structure made of metals, ceramics, and composites in various fields such as medical ultrasonic sensors, CT collimators, and ultra-small actuator parts. Micro powder injection molding (PIM) is a technology for manufacturing micro size, high volume, complex, precision, net-shape components from either metal or ceramic powder. In the present study, a standard mold with a variable insert core capable of producing various micro patterns was investigated. An injection molding test was performed on a standard mold using a line type micro-pattern core having an aspect ratio of 2, a slenderness ratio of 70, a pattern size of $200{\mu}m$, and a pattern spacing of $150{\mu}m$. During the filling process, the deformation of the mold with large aspect ratio and slenderness ratio was analyzed by the experiment and the numerical simulation according to the position of the gate. We proposed a mold structure that minimizes mold deformation by gate modification and enables uniform pattern filling behavior.

초경합금에 FVAS로 코팅한 DLC 박막의 특성 (Characteristic of DLC Thin Film Fabricated by FVAS Method on Tungsten Carbide)

  • 천민우;박용필;김태곤;이호식
    • 한국전기전자재료학회논문지
    • /
    • 제24권10호
    • /
    • pp.812-816
    • /
    • 2011
  • An optical lens is usually produced in the manner of high temperature compression molding with tungsten carbide alloy molding cores, it is necessary to develop and study technology for super-precision processing of molding cores and coating the core surface. As main methods used in surface improvement technologies using thin film, DLC present high hardness, chemical stability, and outstanding durability of abrasion to be extensively applied in various industrial fields. In this study, the effect of DLC coating of a thin film by means of the FVAS (filtered vacuum arc source) analyzed the characteristics of thin film. Surface roughness before and after DLC coating was measured and the result showed that the surface roughness was improved after coating as compared to before coating. In conclusion, it was observed that DLC coating of the ultra hard alloy core surface for molding had an effect on improving the surface roughness and shape of the core surface. It is considered that this will have an effect on improving abrasion resistance and the service life of the core surface.

렌티큘러 스티커를 이용한 커버리지 구현 연구 (Study of Coverage Implementation Using Lenticular Sticker)

  • 정승혁
    • 한국전자통신학회논문지
    • /
    • 제14권3호
    • /
    • pp.573-578
    • /
    • 2019
  • 최근 실내 측위의 기술이 발달함에 따라 기지국 측위, 와이파이 측위 및 블루투스 비콘 측위 기술이 건물 및 지하공간에 도입되어 운용되고 있다. 이는 시스템과 서비스를 제공하는 공급자 중심의 측위로 사용자의 동선기반에서 사용자가 직접 측위하는 방식인 렌티큘러 측위 기술을 도입하여, 사용자 중심의 초고정밀 측위가 가능한 기술을 소개한다. 렌티큘러 스티커를 활용한 커버리지 구현 방안 연구를 통해 렌티큘러 측위 기술의 가장 중요한 부분 중 하나인 렌티큘러 스티커의 커버리지 구현 방안에 대해 살펴보고, 사용자 관점의 짧은 측위 시간의 결과 값을 제시하고자 한다.

사출 성형 조건이 에프세타 렌즈의 유효면 특성에 미치는 영향 (Effect of Injection Molding Conditions of Effective Surface Properties of F-theta Lens)

  • 박용우;장기;문성민;류성기
    • 한국기계가공학회지
    • /
    • 제20권9호
    • /
    • pp.20-27
    • /
    • 2021
  • The effective surface of lens was studied for injection molding process and to enable mass production of f-theta lens, which is the primary component of laser printers and laser scanning systems. Injection molding is an optimal method if f-theta lens is frequently used for the mass production of plastic lenses as an aspherical lens that requires ultra-precision. A uniform injection molding system should be maintained to produce high quality lenses. Additionally, to maintain these injection molding systems, various factors such as pressure, speed, temperature, mold and cooling should be considered. However, a lens with the optical characteristics of an f-theta lens can be obtained. The effects of melting and cooling of plastic resin on the effective surface of f-theta lenses and the numerous factors that affect the injection molding process were studied.