• Title/Summary/Keyword: ultra-low-power system

Search Result 167, Processing Time 0.029 seconds

A Design of Ultra Wide Band Switched-Gain Controlled Low Noise Amplifier Using 0.18 um CMOS (0.18 um CMOS 공정을 이용한 UWB 스위칭-이득제어 저잡음 증폭기 설계)

  • Jeong, Moo-Il;Lee, Chang-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.4 s.119
    • /
    • pp.408-415
    • /
    • 2007
  • A switched-gain controlled LNA is designed and implemented in 0.18 um CMOS technology for $3.1{\sim}4.8\;GHz$ UWB system. In high gain mode, measurement shows a power gain of 12.5 dB, an input IP3 of 0 dBm, while consuming only 8.13 mA of current. In low gain mode, measurement shows a power gain of -8.7 dB, an input IP3 of 9.1 dBm, while consuming only 0 mA of current.

GISPD Analysis Using UHF Dual-Band Method (UHF이중대역법을 이용한 GISPD분석)

  • Kim, Kwang-Hwa;Yi, Sang-Hwa;Choi, Jae-Gu
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1860-1862
    • /
    • 2004
  • It is widely known that the ultra high frequency (UHF) method that detects the electromagnetic wave of the PD pulses in the gas insulated space is one of the most competitive methods for its high sensitivity. From the above point of view, this paper describes the characteristics of GIS PD signals measured with ultra wide band (UWB) GIS PD detecting system in which PD signals are detected into the dual UHF band. The UWB PD detection system consists of the UWB UHF coupler, the UWB low noise amplifier (LNA) and the oscilloscope. The dual bands for PD signals are 0.5-2GHz(full band) and 1-2GHz(high band). As results, it was found that the partial discharges of each defect have their own characteristic pattern and the ratio of High band to Full band increases with gas pressure.

  • PDF

GlSPD Analysis Using UHF Dual-Band Method (UHF 이중대역법을 이용한 GIS PD 분석)

  • Yi, Sang-Hwa;Choi, Jae-Gu;Kim, Kwang-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2004.11d
    • /
    • pp.63-66
    • /
    • 2004
  • It is widely known that the ultra high frequency (UHF) method that detects the electromagnetic wave of the PD pulses in the gas insulated space is one of the most competitive methods for its high sensitivity. From the above point of view, this paper describes the characteristics of GIS PD signals measured with ultra wide band (UWB) GIS PD defecting system in which PD signals are defected into the dual UHF band. Thc UWB PD detection system consists of the UWB UHF coupler, the UWB low noise amplifier (LNA) and the oscilloscope. The dual bands for PD signals are 0.5-2GHz(full band) and 1-2GHz(high band). As results, it was found that the partial discharges of each defect have their own characteristic pattern and the ratio of High hand to Full band increases with gas pressure.

  • PDF

Propagation Characteristics of GIS PD Signals by Dual UHF Band Method (2)

  • Choi, Jae-Gu;Yi, Sang-Hwa;Kim, Kwang-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2004.05b
    • /
    • pp.136-139
    • /
    • 2004
  • It is widely known that the ultra high frequency (UHF) method that detects the electromagnetic wave of the PD pulses in the gas insulated space is one of the most competitive methods for its high sensitivity. From the above point of view, this paper describes the propagation characteristics of GIS PD signals measured with ultra wide band (UWB) GIS PD detecting system in which PD signals are detected into the dual UHF band. The UWB PD detection system consists of the UWB UHF coupler, the UWB low noise amplifier (LNA) and the oscilloscope. The dual bands for PD signals are 0.5-2GHz(full band) and 1-2GHz(high band). As results, propagation characteristics of GIS PD signals were measured in the mock-up GIS bus and it was found that the propagation characteristics of the high band showed a better result in accordance with the infernal configuration of the GIS bus than those of the full band.

  • PDF

Development of ultra-high frequency (UHF) ultra-wide bandwidth signal processing unit for UHF partial-discharge monitoring system for gas-insulated switchgears (가스절연개폐장치용 부분방전 감시 시스템을 위한 초광대역 극초단파 신호처리장치 개발)

  • Choi, Jae-Ok;Kim, Young-No;Lee, Young-Sang;Gang, Chang-Won;Park, Ki-Jun;Goo, Sun-Geun;Yoon, Jin-Yul;Koo, Jae-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1963-1966
    • /
    • 2004
  • An ultra wide band ultra-high frequency (UHF) signal processing module was designed for on-line UHF partial discharge (PD) monitoring systems for gas-insulated switchgears (GIS). Major advantage of the unit is an improved PD detection sensitivity through minimizing the effect of surrounding interference signals. The detection sensitivity of the unit was <-60 dBm that is sufficient to detect UHF PD signals as low as 1 pC. Precise detection of PD occurred in the GIS, due to internal defects, is possible by using the signal processing unit.

  • PDF

Development of ultra-high frequency (UHF) ultra-wide bandwidth signal processing unit for UHF partial-discharge monitoring system for gas-insulated switchgears (가스절연개폐장치용 부분방전 감시 시스템을 위한 초광대역 극초단파 신호처리장치 개발)

  • Choi, Jae-Ok;Kim, Young-No;Lee, Young-Sang;Kang, Chang-Won;Park, Ki-Jun;Goo, Sun-Geun;Yoon, Jin-Yul
    • Proceedings of the KIEE Conference
    • /
    • 2004.05b
    • /
    • pp.128-131
    • /
    • 2004
  • An ultra wide band ultra-high frequency (UHF) signal processing module was designed for on-line UHF partial discharge (PD) monitoring systems for gas-insulated switchgears (GIS). Major advantage of the unit is an improved PD detection sensitivity through minimizing the effect of surrounding interference signals. The detection sensitivity of the unit was <-60 dBm that is sufficient to detect UHF PD signals as low as 1 pC. Precise detection of PD occurred in the GIS, due to internal defects, is possible by using the signal processing unit.

  • PDF

On the Interference of Ultra Wide Band Systems on Point to Point Links and Fixed Wireless Access Systems

  • Giuliano, Romeo;Guidoni, Gianluca;Mazzenga, Franco
    • Journal of Communications and Networks
    • /
    • v.6 no.2
    • /
    • pp.163-172
    • /
    • 2004
  • Ultra Wide Bandwidth (UWB) spread-spectrum techniques will playa key role in short range wireless connectivity supporting high bit rates availability and low power consumption. UWB can be used in the design of wireless local and personal area networks providing advanced integrated multimedia services to nomadic users within hot-spot areas. Thus the assessment of the possible interference caused by UWB devices on already existing narrowband and wideband systems is fundamental to ensure nonconflicting coexistence and, therefore, to guarantee acceptance of UWB technology worldwide. In this paper, we study the coexistence issues between an indoor UWB-based system (hot-spot) and outdoor point to point (PP) links and Fixed Wireless Access (FWA) systems operating in the 3.5 - 5.0 GHz frequency range. We consider a realistic UWB master/slave system architecture and we show through computer simulation, that in all practical cases UWB system can coexist with PP and FWA without causing any dangerous interference.

DEVELOPMENT OF ULTRA-LIGHT 2-AXES SUN SENSOR FOR SMALL SATELLITE

  • Kim, Su-Jeoung;Kim, Sun-Ok;Moon, Byoung-Young;Chang, Young-Keun;Oh, Hwa-Suk
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.1
    • /
    • pp.47-58
    • /
    • 2005
  • This paper addresses development of the ultra-light analog sun sensors for small satellite applications. The sun sensor is suitable for attitude determination for small satellite because of its small, light, low-cost, and low power consumption characteristics. The sun sensor is designed, manufactured and characteristic-tested with the target requirements of ${\pm}60^{\circ}$ FOV (Field of View) and pointing accuracy of ${\pm}2^{\circ}$. Since the sun sensor has nonlinear characteristics between output measurement voltage and incident angle of sunlight, a higher order calibration equation is required for error correction. The error was calculated by using a polynomial calibration equation that was computed by the least square method obtained from the measured voltages vs. angles characteristics. Finally, the accuracies of 1-axis and 2-axes sun sensors, which consist of 2 detectors, are compared.

A Low-Energy Ultra-Wideband Internet-of-Things Radio System for Multi-Standard Smart-Home Energy Management

  • Khajenasiri, Iman;Zhu, Peng;Verhelst, Marian;Gielen, Georges
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.5
    • /
    • pp.354-365
    • /
    • 2015
  • This work presents an Internet of Things (IoT) system for home energy management based on a custom-designed Impulse Radio Ultra-Wideband (IR-UWB) transceiver that targets a generic and multi-standard control system. This control system enables the interoperability of heterogeneous devices: it integrates various sensor nodes based on ZigBee, EnOcean and UWB in the same middleware by utilizing an ad-hoc layer as an interface between the hardware and software. The paper presents as a first the design of the IR-UWB transceiver for a portable sensor node integrated with the middleware layer, and also describes the receiver connected to the control system. The custom-designed low-power transmitter on the sensor node is fabricated with 130 nm CMOS technology. It generates a signal with a 1.1 ns pulse width while consuming $39{\mu}W$ at 1 Mbps. The UWB sensor node with a temperature measurement capability consumes 5.31 mW, which is lower than the power level of state-of-the-art solutions for smart-home applications. The UWB hardware and software layers necessary to interface with the control system are verified in over-the-air measurements in an actual office environment. With the implementation of the presented sensor node and its integration in the energy management system, we demonstrate achievement of the broad flexibility demanded for IoT.

A Low-Power Low-Complexity Transmitter for FM-UWB Systems

  • Zhou, Bo;Wang, Jingchao
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.2
    • /
    • pp.194-201
    • /
    • 2015
  • A frequency modulated ultra-wideband (FM-UWB) transmitter with a high-robust relaxation oscillator for subcarrier generation and a dual-path Ring VCO for RF FM is proposed, featuring low power and low complexity. A prototype 3.65-4.25 GHz FM-UWB transceiver employing the presented transmitter is fabricated in $0.18{\mu}m$ CMOS for short-range wireless data transmission. Experimental results show a bit error rate (BER) of $10^{-6}$ at a data rate of 12.5 kb/s with a communication distance of 60 cm is achieved and the power dissipation of 4.3 mW for the proposed transmitter is observed from a 1.8 V supply.