• 제목/요약/키워드: ultra-high pressure

검색결과 319건 처리시간 0.021초

난삭재의 초정밀.고능률 연삭가공을 위한 다이아몬드숫돌의 개발 (Development of diamond wheel for ultra precision and high performance grinding of difficult-to-materials)

  • 허성중
    • 대한기계학회논문집A
    • /
    • 제21권12호
    • /
    • pp.2172-2178
    • /
    • 1997
  • Development of diamond wheel with fine grains and multi-pore structures were newely attempted. Wheels, that are employed for ultra precision and high performance grinding of difficult-to materials such as tungsten carbide alloy using tool and die materials, must have both performances to remove tool marks efficiently and to contact elastically with curved surfaces. Diamond grains were bonded firmly by a melamine resin to prevent the decrease of machining efficiency due to grain sinking within the bond materials. Also, highly foamed structures were developed to increase the flexibility of the wheel, and to induce active self-sharpening by increasing contact pressure between the wheel and work surfaces. In this paper, melamine-bonded diamond wheels are trial manufactured, then the forming method of wheels are suggested, and the grinding characteristics of wheels are also illustrated.

현장적용 초유동 콘크리트의 펌프압송 전후 단위수량 변화 특성 (Properties of Water Content Variances in Ultra High Flowing Concrete Before and After the Pumping Operation)

  • 김경민;유재강;신홍철;최종원
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.401-404
    • /
    • 2006
  • This study is the part of the investigation of the state of the art in ultra high flowing concrete (UHFC), applied in practical field construction, in order to develop the technology for improving workability. This paper includes a brief introduction of water content variance properties in UHFC before and after the pumping operation. Test showed that water content in all parameters decreased after the pumping. This is due to the increase of an absorption ratio of coarse aggregate by the pressure of the pumping operation. thus decreasing the water content. Therefore it should be considered to find out the possibility, which can improve the workability, suffering from over viscosity by the lower water content, in field construction.

  • PDF

2열 외부가압 공기 저어널 베어링에서 공기 급기구 위치에 따른 동적계수에 관한 실험적 연구 (A Expermental Study on the Dynamic Coefficients according to the Source Positions in Externally Pressurised Air-lubricated Journal Bearing with Two Row Sources)

  • 이종렬;이준석;성승학;이득우
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제33회 춘계학술대회 개최
    • /
    • pp.231-235
    • /
    • 2001
  • This paper has been presented the dynamic effect by the journal speed. eccentricity and source positions in order to overcome the defects of air bearing such as low stiffness and damping coefficient. Choosing the two row source position of air bearing is different from previous investigations in the side of pressure distribution of air film by the wedge effects. These optimal chooses of the two row source positions enable us to improve the performance of the film reaction force and loading force as making the high speed spindle. The results of investigated characteristics may be applied to precision devices like ultra-precision grinding machine and ultra high speed milling.

  • PDF

고압 균질기를 통해 합성된 이산화망간 나노입자에 의한 일산화탄소의 촉매적 산화 (Catalytic Oxidation of CO over Manganese Dioxide Nanoparticles Synthesized Using a High Pressure Homogenizer)

  • 지성화;김효진
    • 한국표면공학회지
    • /
    • 제53권1호
    • /
    • pp.22-28
    • /
    • 2020
  • In this study, manganese dioxide (MnO2) nanoparticles were synthesized from KMnO4 and MnCl2·4H2O without any dispersing agents and oxidant via ultra-high pressure homogenization process. We investigated various physicochemical properties and CO oxidation reactions of the MnO2 nanoparticles as a function of the number of passes at 1,500 bar in a high pressure homogenizer nozzle. The observed X-ray diffraction patterns and scanning electron microscopy images revealed that the synthesized MnO2 nanoparticles had a hexagonal structure and a uniform spherical shape. It was found from the Brunauer-Emmett-Teller measurements that the pore size of the MnO2 nanoparticles ranged from 23.6 to 7.2 nm and their specific surface area ranged from 24 to 208 m2g-1. In particular, it was confirmed from the measurements of CO conversion into CO2 that CO oxidation reaction over the MnO2 nanoparticles exhibited excellent catalytic activity at low temperatures below 100℃.

초고압초음파분해법을 이용한 축산물내 미량금속 잔류분석을 위한 시료전처리 방법 (A Study on Sample Preparation for the Analysis of Trace Elements in Foods of Animal Origin by Ultra High Pressure Microwave Digestion)

  • 이명헌;이희수;손성완;정갑수;박종명;김상근
    • 대한수의학회지
    • /
    • 제43권3호
    • /
    • pp.393-398
    • /
    • 2003
  • Simple and rapid sample preparation method for trace elements in foods of animal origin using ultra high pressure microwave digestion system (UHP/MDS) and inductively coupled plasma atomic emission spectrometer (ICP/AES) were developed. 1. For the digestion of sample using UHP-MDS, 20% nitric acid (v/v) was the most suitable solvent for the determination of trace elements in foods of animal origin. 2. The optimal digestion conditions for UHP-MDS were as follows: final temperature $180^{\circ}C$, final pressure 400 PSI, and magnetic power 900 W in the solid sample. For the liquid sample final temperature $170^{\circ}C$, final pressure 300 PSI and magnetic power 700 W were optimal conditions. 3. As result of interlaboratory test, the average recovery rate of the for solid sample were 88.3~99.1% for As, 82.4~93.3% for Cd, 89.2~101.2% for Hg and 86.5~93.8% for Pb, respectively. In liquid sample, it were 87.0~96.8% for As, 80.9~96.6% for Cd, 87.5~91.2% for Hg and 91.4~95.5% for Pb, respectively. 4. The average coefficient variation rate were 3.3~15.9% for solid sample and 2.9~10.8% for liquid sample.

A Study on Hydrodynamic Stiffness Characteristics of Air Bearing for High Speed Spindle

  • Lee, J.Y.;Lee, D.W.;Seong, S.H.;Lee, Y.C.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.115-116
    • /
    • 2002
  • This study was carried out as one of efforts to overcome difficulties in air bearing design due to low stiffness and low damping. Hydrodynamic effects on hydrodynamic stiffness of a fluid film in a high speed air bearing with tow-row air sources are investigated. The hydrodynamic effects by the high speed over DN 1,000,000 and eccentricity of a proceeding which are not considered in conventional design of an air bearing need to be reconsidered. The hydrodynamic effects, which dominantly influence on the load capacity of air bearing, are caused mainly by proceeding speed, eccentricity, and the source positions. The two-row source arrangement in the air bearing produces quite unique hydrodynamic effects with respect to pressure distribution of the air film. Optimal arrangement of the two-row sources improves performance of an air bearing in film reaction force and loading capacity of high speed spindles. This study compares the pressure distribution by numerical simulation as a function of eccentricity of proceeding and the source positions. The air source position 1/7L form one end of an air bearing was found to be superior to source position of 1/4L. The dynamic stiffness were obtained using a two-dimensional cutting method which can directly measure the cutting reaction forces and the displacements of the spindle in two directions using a tool dynamometer and transducer sensors. Heat generation in the air film can not be negligible over the speed of DN 2,000,000. In order to analysis effects of heat generation on the characteristics of air bearing, high cooling bearing spindle and low cooling bearing spindle were tested and compared. Characteristics of the frequency response of shaft and motion of run out errors were different for the spindle. The test results show that, in the case of low cooling bearing spindle, the stiffness became smaller due to heat generation. The results, which were obtained for high speed region, may be used as a design information for spindle which can be applied to precision devices such as ultra precision grinding and ultra high speed milling.

  • PDF

2단 경가스총에 대한 실험적 연구 (Experimental Study on the Two-Stage Light-Gas Gun)

  • 이중근;이종성;김희동;구자예
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제34회 춘계학술대회논문집
    • /
    • pp.345-348
    • /
    • 2010
  • Two-stage light-gas gun은 고압실, 압축실 그리고 발사관으로 비교적 간단한 구조로 구성되며, 짧은 시간동안 초고압을 발생시키기 용이함으로 현재까지 고속충격역학, 발사체 공기역학, 재료역학 등 다양한 공학 분야에서 적용되어왔다. 본 연구는 초고압 액체 제트 분사에 적용하기 위한 기초적 연구로서, 고압실 하류에 설치된 제1격막의 파막 압력의 변화에 따른 발사체의 속도 변화 및 관내 압력 거동을 조사하기위하여, 다양한 격막을 적용하여 실험을 수행하였다. 제1격막의 파막 압력은 발사체의 속도에 지배적인 영향을 미치게 되며, 약 14 Bar이상일 경우 발사관의 압력이 압축튜브의 압력보다 크게 증가하였다.

  • PDF

화력발전 소재 및 제조기술 개발 (Development trend of material and manufacturing process for fossil power generation)

  • 이경운;공병욱;김민수;강정윤
    • 한국압력기기공학회 논문집
    • /
    • 제12권1호
    • /
    • pp.141-148
    • /
    • 2016
  • This paper presents an overview of worldwide electric power development and National $700^{\circ}C$ Hyper Supercritical coal-fired power generation(HSC) focus on materials and manufacturing process. To Increase the efficiency of electric power generation, It is necessary to increase steam temperature and pressure. In that case, New material and manufacturing process shall be developed for boiler and turbine component in high temperature and pressure operating condition. Therefore, Much Efforts in worldwide are progressing to develop materials and manufacturing technology and to build and operate an HSC.

Advances in Non-Interference Sensing for Wearable Sensors: Selectively Detecting Multi-Signals from Pressure, Strain, and Temperature

  • Byung Ku Jung;Yoonji Yang;Soong Ju Oh
    • 센서학회지
    • /
    • 제32권6호
    • /
    • pp.340-351
    • /
    • 2023
  • Wearable sensors designed for strain, pressure, and temperature measurements are essential for monitoring human movements, health status, physiological data, and responses to external stimuli. Notably, recent research has led to the development of high-performance wearable sensors using innovative materials and device structures that exhibit ultra-high sensitivity compared with their commercial counterparts. However, the quest for accurate sensing has identified a critical challenge. Specifically, the mechanical flexibility of the substrates in wearable sensors can introduce interference signals, particularly when subjected to varying external stimuli and environmental conditions, potentially resulting in signal crosstalk and compromised data fidelity. Consequently, the pursuit of non-interference sensing technology is pivotal for enabling independent measurements of concurrent input signals related to strain, pressure, and temperature, ensuring precise signal acquisition. In this comprehensive review, we present an overview of the recent advances in noninterference sensing strategies. We explore various fabrication methods for sensing strain, pressure, and temperature, emphasizing the use of hybrid composite materials with distinct mechanical properties. This review contributes to the understanding of critical developments in wearable sensor technology that are vital for their ongoing application and evolution in numerous fields.

초고압 처리가 블루베리의 항산화 증진에 미치는 영향 (Enhancement of Antioxidant Activities of Blueberry (Vaccinium ashei) by Using High-Pressure Extraction Process)

  • 박성진;최영범;고정림;김영언;이현용
    • 한국식품영양과학회지
    • /
    • 제43권3호
    • /
    • pp.471-476
    • /
    • 2014
  • 본 연구에서는 초고압 추출공정을 이용하여 전통적인 기존 추출공정과 비교함으로써 초고압 추출공정에 의한 블루베리의 항산화 활성 증진을 확인하고자 연구를 수행하였다. 초고압 처리 추출물의 수율이 18.48, 19.89%로 높은 추출수율을 나타내어 일반 열수추출공정(12.36%)과 비교하여 약 1.6배의 높은 추출수율을 나타내었다. 초고압 공정에 따른 변화 비교에서는 초고압 공정을 병행하였을 시 총 페놀과 플라보노이드 함량이 초고압 공정을 거치지 않은 것보다 다소 증가되는 것으로 보아 활성성분의 용출이 증진된 것으로 보인다. DPPH radical 소거 활성은 15분 초고압 처리한 추출물이 53.84%로 높은 활성을 나타내었으며, 환원력 역시 전체적으로 초고압 공정을 실시하였을 때의 활성이 높게 측정되었다. 추출공정에 따른 블루베리 시료의 주사전자현미경을 통해 초고압 추출이 블루베리 내부 조직까지 영향을 주어 세포벽이 깨어지면서 조직 및 구조가 변화한 것으로 판단되며, 이를 통해 수율 및 활성성분의 용출 증가가 이루어진 것으로 사료된다. 따라서 블루베리의 초고압 추출공정의 최적화를 통한 활성물질의 추출 극대화를 통해 높은 경제적 가치를 이룰 것으로 판단된다.