DOI QR코드

DOI QR Code

Catalytic Oxidation of CO over Manganese Dioxide Nanoparticles Synthesized Using a High Pressure Homogenizer

고압 균질기를 통해 합성된 이산화망간 나노입자에 의한 일산화탄소의 촉매적 산화

  • Ji, Sunghwa (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Hyojin (Department of Materials Science and Engineering, Chungnam National University)
  • 지성화 (충남대학교 신소재공학과) ;
  • 김효진 (충남대학교 신소재공학과)
  • Received : 2020.02.02
  • Accepted : 2020.02.28
  • Published : 2020.02.29

Abstract

In this study, manganese dioxide (MnO2) nanoparticles were synthesized from KMnO4 and MnCl2·4H2O without any dispersing agents and oxidant via ultra-high pressure homogenization process. We investigated various physicochemical properties and CO oxidation reactions of the MnO2 nanoparticles as a function of the number of passes at 1,500 bar in a high pressure homogenizer nozzle. The observed X-ray diffraction patterns and scanning electron microscopy images revealed that the synthesized MnO2 nanoparticles had a hexagonal structure and a uniform spherical shape. It was found from the Brunauer-Emmett-Teller measurements that the pore size of the MnO2 nanoparticles ranged from 23.6 to 7.2 nm and their specific surface area ranged from 24 to 208 m2g-1. In particular, it was confirmed from the measurements of CO conversion into CO2 that CO oxidation reaction over the MnO2 nanoparticles exhibited excellent catalytic activity at low temperatures below 100℃.

Keywords

References

  1. Y.H. Lee, S.A. Jeon, S.J. Park, H.K. Youn, C.H. Shin, Physicochemical Properties of $MnO_2$ Catalyst Prepared via Hydrothermal Process and its Application for CO Oxidation, Clean Technol. 21 (2015) 248-256. https://doi.org/10.7464/ksct.2015.21.4.248
  2. J.H. Park, Y.J. Kim, K.H. Cho, E.S. Kim, C.H. Shin, CO Oxidation Over Manganese Oxide Catalysts: Effect of Calcination Temperatures, Clean Technol. 17 (2011) 41-47. https://doi.org/10.7464/KSCT.2011.17.1.041
  3. S.F. Chen, J.P. Li, K. Qian, W.P. Xu, Y. Lu, W.X. Huang, S.H. Yu, Large scale photochemical synthesis of $M@TiO_2$ nanocomposites (M = Ag, Pd, Au, Pt) and their optical properties, CO oxidation performance, and antibacterial effect, Nano Res. 3 (2010) 244-255. https://doi.org/10.1007/s12274-010-1027-z
  4. M.S. Chen, Y. Cai, Z. Yan, K.K. Gath, S. Axnanda, D.W. Goodman, Highly active surfaces for CO oxidation on Rh, Pd, and Pt, Surf. Sci. 601 (2007) 5326-5331. https://doi.org/10.1016/j.susc.2007.08.019
  5. M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M.J. Genet, B. Delmon, Low-Temperature Oxidation of CO over Gold Supported on $TiO_2$, ${\alpha}-Fe_2O_3$, and $Co_3O_4$, J. Catal. 144 (1993) 175-192. https://doi.org/10.1006/jcat.1993.1322
  6. V. Shapovalov, H. Metiu, Catalysis by doped oxides: CO oxidation by $Au_xCe_{1-x}O_2$, J. Catal. 245 (2007) 205-214. https://doi.org/10.1016/j.jcat.2006.10.009
  7. J. Xu, T. White, P. Li, C. He, J. Yu, W. Yuan, Y.-F. Han, Biphasic Pd-Au Alloy Catalyst for Low-Temperature CO Oxidation, J. Am. Chem. Soc. 132 (2010), 10398-10406. https://doi.org/10.1021/ja102617r
  8. J.Y. Park, Y. Zhang, M. Grass, T. Zhang, G.A. Somorjai, Tuning of Catalytic CO Oxidation by Changing Composition of Rh-Pt Bimetallic Nanoparticles, Nano Lett. 8 (2008) 673-677. https://doi.org/10.1021/nl073195i
  9. H.-K. Lin, H.-C. Chiu, H.-C. Tsai, S.-H. Chien, C.-B. Wang, Synthesis, Characterization and Catalytic Oxidation of Carbon Monoxide over Cobalt Oxide, Catal. Lett. 88 (2003) 169-174. https://doi.org/10.1023/A:1024013822986
  10. J. Jansson, Low-Temperature CO Oxidation over $Co_3O_4/Al_2O_3$, J. Catal. 194 (2000) 55-60. https://doi.org/10.1006/jcat.2000.2924
  11. X. Xie, Y. Li, Z. Q. Liu, M. Haruta, W. Shen, Low-temperature oxidation of CO catalysed by $Co_3O_4$ nanorods, Nature 458 (2009) 746-749. https://doi.org/10.1038/nature07877
  12. K. Rida, A. Lopez Camara, M.A. Pena, C.L. Bolivar-Diaz, A. Martinez-Arias, Bimetallic Co-Fe and Co-Cr oxide systems supported on $CeO_2$: Characterization and CO oxidation catalytic behavior, Int. J. Hydrogen Energy 40 (2015) 11267-11278. https://doi.org/10.1016/j.ijhydene.2015.03.044
  13. L. Cai, Z. Hu, P. Branton, W. Li, The effect of doping transition metal oxides on copper manganese oxides for the catalytic oxidation of CO, Chinese J. Catal. 35 (2014) 159-167. https://doi.org/10.1016/S1872-2067(12)60699-8
  14. Z.-D. Tan, H.-Y. Tan, X.-Y. Shi, J. Zhuan, Y.-F. Yan, Z. Yin, Metal-Organic Framework MIL-53(Al)-Supported Copper Catalyst for CO Catalytic Oxidation Reaction, Inorg. Chem. Commun. 61 (2015) 128-131. https://doi.org/10.1016/j.inoche.2015.09.004
  15. Y. Zhao, P. Jiang, $MnO_2$ Nanosheets Grown on the ZnO-Nanorod-Modified Carbon Fibers for Supercapacitor Electrode Materials, Colloid. Surface. A: Physicochem. Eng. Aspects 444 (2014) 232-239. https://doi.org/10.1016/j.colsurfa.2013.12.067
  16. U.M. Patil, J.S. Sohn, S.B. Kulkarni, H.G. Park, Y. Jung, K.V. Gurav, J.H. Kim, S.C. Jun, A Facile Synthesis of Hierarchical ${\alpha}-MnO_2$ Nanofibers on 3D-Graphene Foam for Supercapacitor Application, Mater. Lett. 119 (2014) 135-139. https://doi.org/10.1016/j.matlet.2013.12.105
  17. C.-H. Wu, J.-S. Ma, C.-H. Lu, Effects of Reducing Agents on the Electrochemical Properties of the Prepared Manganese Oxide Powders, Curr. Appl. Phys. 12 (2012) 1058-1063. https://doi.org/10.1016/j.cap.2012.01.007
  18. Y. Lv, H. Li, Y. Xie, S. Li, J. Li, Y. Xing, Y. Song, Facile synthesis and Electrochemical Properties of $MnO_2$/carbon Nanotubes, Particuology 15 (2014) 34-38. https://doi.org/10.1016/j.partic.2012.12.006
  19. E.R. Stobbe, B.A. de Boer, J.W. Geus, The Reduction and Oxidation Behaviour of Manganese Oxides, Catal. Today 47 (1999) 161-167. https://doi.org/10.1016/S0920-5861(98)00296-X
  20. C.-L. Chang, Y.-C. Lin, H. Bai, Y.-H. Liu, Applying Spray Pyrolysis to Synthesize $MnO_X$ for Decomposing Isopropyl Alcohol in Ozone- and Thermal-Catalytic Oxidation, Korean J. Chem. Eng. 26 (2010) 1047-1052. https://doi.org/10.1007/s11814-009-0174-y
  21. Y.S. Lee, J.S. Park, K.J. Oh, Oxidation Characteristics of Low Concentration CO Gas by the Natural Manganese Dioxide (NMD) in a Fixed Bed, Clean Technol. 2 (1996) 60-68.
  22. P. Botkovitz, P. Deniard, M. Tournoux, R. Brec, Structural and Electrochemical Characteristics of a Hollandite-type $Li_XMnO_2$, J. Power. Sources 43-44 (1993) 657-665.
  23. Q. Feng, H. Kanohb, K Ooi, Manganese Oxide Porous Crystals, J. Mater. Chem. 9 (1998) 319-333. https://doi.org/10.1039/a805369c
  24. P. Barboux, J.M. Tarascon, F.K. Shokoohi, The Use of Acetates as Precursors for the Low-Temperature Synthesis of $LiMn_2O_4$ and $LiCoO_2$ Intercalation Compounds, J. Solid State Chem. 94 (1991) 185-196. https://doi.org/10.1016/0022-4596(91)90231-6
  25. R. Koksbang, J. Barker, H. Shi, M.Y. Saidi, Cathode Materials for Lithium Rocking Chair Batteries, Solid State Ionics 84 (1996) 1-21. https://doi.org/10.1016/S0167-2738(96)83001-3
  26. K. Burapapadh, H. Takeuchi, P. Sriamornsak, Pectin-Based Nano-Sized Emulsions Prepared by High-Pressure Homogenization, Adv. Mater. Res. 506 (2012) 286-289. https://doi.org/10.4028/www.scientific.net/AMR.506.286
  27. A. A. Nagi, A. Rasedee, I. Siddig, B. Ahmad, Tamoxifen Drug Loading Solid Lipid Nanoparticles Prepared by Hot High Pressure Homogenization Techniques, Am. J. Pharm. Toxicol. 3 (2008) 219-224 (2008). https://doi.org/10.3844/ajptsp.2008.219.224
  28. J.H. Cho, T.Y. Kim, H.Y. Yun, H. H. Kim, Facile depolymerization process of ${\beta}$-glucan through the use of a high pressure homogenizer, Am. J. Res. Comm. 4 (2014) 168-178.
  29. S. H. Ji, H. H. Kim, and H. Kim, Effect of Pressure on the Magnetic Properties of Magnetite Nanoparticles Synthesized Using a High Pressure Homogenizer, J. Korean Magn. Soc. 26 (2016) 190-195. https://doi.org/10.4283/JKMS.2016.26.6.190
  30. L. Jin, C. Chen, V.M.B. Crisostomo, L. Xu, Y. Son, S.L. Suib, ${\gamma}-MnO_2$ octahedral molecular sieve: Preparation, characterization, and catalytic activity in the atmospheric oxidation of toluene, Appl. Catal. A 355 (2009) 169-175. https://doi.org/10.1016/j.apcata.2008.12.012