• Title/Summary/Keyword: two-way shear strength

Search Result 120, Processing Time 0.026 seconds

Comparison of adhesive strength of resinous teeth splinting materials according to enamel surface treatment (법랑질 표면 처리방법에 따른 레진계 치아 고정재료의 접착강도 비교)

  • Lee, Ye-Rim;Kim, Soo-Yeon;Kim, Jin-Woo;Park, Se-Hee;Cho, Kyung-Mo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.35 no.2
    • /
    • pp.72-80
    • /
    • 2019
  • Purpose: The purpose of this study is to compare and analyze the shear bond strength and fracture pattern in different enamel tooth surface treatments for resin splinting materials. Materials and Methods: G-FIX and LightFix were used as tooth splinting materials. Twenty bovine mandibular incisors were used for the preparation of the specimens. The exposed enamel surface was separated into four parts. Each tooth was treated with 37% phosphoric acid, 37% phosphoric acid + adhesive resin, 37% phosphoric acid + G-premio bond, and G-premio bond for each fraction. Shear bond strength was measured using a universal testing machine. After measuring the shear bond strength, the fractured surface of the specimen was magnified with a microscope to observe the fracture pattern. Two-way ANOVA was used to verify the interaction between the material and the surface treatment method. One-way ANOVA was used for comparison between the surface treatment methods of each material and post-hoc test was conducted with Scheffe's test. An independent t-test was conducted to compare shear bond strengths between materials in each surface treatment method. All statistics were conducted at 95% significance level. Results: G-FIX, a tooth splinting resin, showed similar shear bonding strength when additional adhesive resins were used when material was applied after only acid etching, and LightFix showed the highest shear bonding strength when additional adhesive resins were used after the acid etching. In addition, both G-FIX and LightFix showed the lowest shear bond strength when only self-etching adhesive was applied without additional acid etching. Verification of interactions observed interconnection between resins and surface treatment methods. Most of the mixed failure was observed in all counties. Conclusion: When using G-FIX and LightFix, which are tooth-splinting materials, it is considered that sufficient adhesion will be achieved even after applying only acid etching as instructed by the manufacturer.

Evaluation of Shear Capacity According to Transverse Spacing of Wide Beam Shear Reinforced with Steel Plate with Openings (유공형 강판으로 전단보강된 넓은 보에서의 횡방향 보강 간격에 따른 전단성능 평가)

  • Choi, Jin Woong;Kim, Min Sook;Choi, Bong-Seob;Lee, Young Hak;Kim, Heecheul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.3
    • /
    • pp.259-266
    • /
    • 2015
  • In this paper, transverse shear spacing and effective depth of wide beams were considered as parameters to evaluate the shear capacity of wide beam according to transverse spacing of steel plates with openings in experimental way. The eight specimens were composed of: five specimens of shear reinforced by steel plates with openings and three non-reinforced specimens. Crack, failure mode, strain and load-displacement curve of specimens were analysed. Shear contribution of shear reinforcement is evaluated and maximum transverse spacing of shear reinforcement was proposed. Shear strength of the specimen that reinforced with three stirrup legs was higher than shear strength of the specimen that reinforced with two stirrup legs. And as the effective depth increased, shear strength was increased.

Effect of Timing of Light Curing on the Shear Bond Strength of Three Self-adhesive Resin Cements

  • Yoo, Yeon-Kwon;Kim, Sung-Hun;Ryu, Jae-Jun;Ryu, Jae-Jun
    • Journal of Korean Dental Science
    • /
    • v.1 no.1
    • /
    • pp.28-34
    • /
    • 2008
  • Objectives. The objectives of this study were: 1) to compare the effect of varying timing of light curing on shear bond strength, and; 2) to compare the shear bond strength of three self-adhesive cements. Materials and methods. A total of 72 extracted non-carious teeth were divided into 24 for Unicem tests, 24 for Maxcem tests, and 24 for Biscem tests; they were assigned 3 * 2 subgroups of 12 teeth each. The specimens were prepared as follows: 1) The calculus and periodontal ligament were removed from the teeth; 2) The teeth were stored in normal saline; 3) The occlusal enamel of each tooth was removed using high-speed coarse diamond burs under water cooling, and; 4) Finally, the teeth were flattened by 600-grit silicone carbide paper disks. Resin blocks were adhered using either Unicem, Maxcem, or Biscem. Light curing timing was divided into two groups: U10, M10, and B10 were exposed to light after 10 seconds, and; U150, M150, and B150 on the other side were exposed to light after 150 seconds. Shear bond strength was measured by a Universal testing machine with cross head speed of 1mm/min. T-test and One way ANOVA were used for the statistical analysis of data. Results. The shear bond strength of U150 was not significantly higher than that of U10 (U150: 20.55.7Mpa, U10: 18.73.80Mpa). On the other hand, the shear bond strength of M150 was significantly higher than that of M10. The shear bond strength of B150 was also significantly higher than that of B10 (M150:14.45.7Mpa, M10: 9.94.2Mpa, B150: 24.38.3Mpa, B10: 17.27.3Mpa). When the light curing timing was 10sec after bonding, the shear bond strength of Unicem was highest; the shear bond strength of Biscem was highest when the light curing timing was 150sec after bonding (U10: 18.73.80Mpa, B150: 24.38.3Mpa). Significance. Since Unicem is less sensitive based on light curing timing, dentists seem to use it without considering the light curing timing. Maxcem showed the lowest bonding strength (especially M10). Thus, when using Maxcem, dentists need to delay the light curing after adhesion.

  • PDF

THE EFFECT OF ETCHING TIME ON SHEAR BOND STRENGTH AND ADAPTIBILITY OF ONE-BOTTLE DENTIN ADHESIVE (One-bottle 상아질 접착제의 전단결합강도와 접착성에 관한 부식시간의 효과)

  • Park, Kwang-Soo;Park, Il-Yoon;Cho, Young-Gon
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.1
    • /
    • pp.240-250
    • /
    • 1999
  • The purpose of this study was to evaluate the effect of different etching time on the shear bond strength and adaptibility of composite to enamel and dentin when used one-bottle adhesive Prime & Bond$^{TM}$ 2.0. The proximal and occlusal surfaces of 88 extracted human molars were ground to expose enamel(n=44) and dentin (=44) using diamond wheel saw. Teeth were randomly assigned to four test groups(n=11) and received the following treatments : Control group were conditioned with 36% phosphoric acid for 20 sec. according to the manufacturer's directions. Experimental 10 sec. group, 30 sec. group and 60 sec. group were conditioned with 36% phosphoric acid for 10 sec., 30 sec. and 60 sec., respectively. Teeth were rinsed and dried for 2 sec. Prime & Bond$^{TM}$ 2.0 were applied according to the manufacturer's directions and Spectrum$^{TM}$ TPH composite resins were bonded to enamel and dentin surfaces. All specimens were stored in distilled water for 24 hours. Eighty specimens were sheared in a Universal Testing Machine with a crosshead speed of 5mm/minute. One way ANOVA and LSD test were used for statistical analysis of the data. Failure modes of all specimens after shear bond strength test were examined and listed. Also, representive postfracture modes and eight specimens were examined under scanning electron microscope. The results of this study were as follows: 1. The shear bond strength to enamel was the highest value in 30 sec. group (20.68${\pm}$8.54MPa) and the lowest value in 10 sec. group (14.92${\pm}$6.07MPa), so there was significant difference of shear bond strength between two groups (p<0.05). But there was no significant difference among other groups (p>0.05). With longer etching time to enamel from 10 sec. to 30 sec., higher the shear bond strength was obtained, but the shear bond strength was decreased at 60 sec. etching time. 2. The shear bond strength to dentin was the highest value in control group (13.08${\pm}$6.25MPa) and the lowest value in 60 sec. group (9.47${\pm}$3.35MPa), but there was no significant difference among the all groups (p>0.05). The eching time over 20 sec. decreased the shear bond strength to dentin. 3. In SEM observation, the enamel and resin interfaces were showed close adaptation with no relation to etching time of enamel. And the dentin and resin interfaces were showed close adaptation at 20 sec. and 30 sec. etching time, but showed some gaps at 10 sec. and 60 sec. etching time. Accordingly, these results indicated that a appropriate etching time in Prime & Bond$^{TM}$ 2.0 was required to be 30 sec. in enamel and 20 sec. in dentin for the high shear bond strength and good adaptation between the composite resin and tooth substance.

  • PDF

Study about shear bond strength of zirconia core used in dental prosthesis (치과 보철물에 사용되는 지르코니아 코어의 전단결합강도에 관한 연구)

  • Sim, Ji-Young;Kim, Jae-Hong;Kim, Woong-Chul;Kim, Hae-Young;Kim, Ji-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.33 no.4
    • /
    • pp.299-306
    • /
    • 2011
  • Purpose: This study aimed to investigate the shear bond strength by manufacturing the veneering porcelain on the IPS e.max $ZirCAD^{(R)}$ zirconia core, using the layering technique and heat-pressing technique, and to evaluate the clinical stability by comparing to the conventional metal ceramic system. Methods: The Schmitz-Schulmeyer test method was used to evaluate the core-veneer shear bond strength of zirconia core ceramic(IPS e.max $ZirCAD^{(R)}$) and their manufacture recommended two veneering ceramic systems(IPS e.max $ceram^{(R)}$, IPS e. max $ZirPress^{(R)}$). A metal ceramic system(Bellabond $plus^{(R)}$, VITA $VM13^{(R)}$) was used as a control group for the two all ceramic system test groups. The maximum loading and shear bond strength was measured. The average shear strength(MPa) was analyzed with the one-way ANOVA and the Tukey's test(${\alpha}$=.05). The fracture specimens were examined using Microscope to determine the failure pattern. Results: The mean shear bond strengths(SD) in MPa were MBSB control 43.62(2.13); ZBSB 18.65(1.76); ZPSB 18.89(1.54). The shear strengths of the zirconia cores were not significantly different(P>.05). Microscope examination showed that zirconia specimens presented mixed failure, and base metal alloy specimens showed adhesive failure. Conclusion: There was no siginificant different between the layering technique and the heat pressing technique in the veneering methods on the zirconia cores. None of the zirconia core and veneering ceramics could attain the high bond strength values of the metal ceramic combination.

Effect of Hydrofluoric Acid Etching on Shear Bond Strength between Resin Cement and Zirconia cores (표면 불산처리가 레진시멘트와 지르코니아 하부구조물의 전단결합강도에 미치는 영향)

  • Kim, Sa-Hak;Kim, Sun-Moon;Kim, Chong-Kyen
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.10
    • /
    • pp.361-367
    • /
    • 2018
  • The purpose of this study was to evaluate the influence of hydrofluoric acid etching treatment on the bonding strength of yttria-stabilized tetragonal zirconia polycrystal(Y-TZP). Four groups of zirconia-resin cement specimens were prepared; 1) ZGS group (zirconia, no treatment), 2) ZGSH group (zirconia, hydrofluoric acid etching treatment) 3) H-ZGS group (Hybrid zirconia, no treatment) 4) H-ZGSH group (Hybrid zirconia, hydrofluoric acid etching treatment). The shear bond strength between zirconia and porcelain was measured using a Instron Universal Testing Machine(Model DBBP-500, Instron Corporation, Kyonggi, Korea). Data were statistically analyzed using independent t-test and two-way ANOVA(${\alpha}=0.05$). The ceramic-resin cement bonding strength was affected by hydrofluoric acid etching treatment(p<0.05). Digital microscope examination of the fracture surface showed mixed failures with adhesive and cohesive types in hydrofluoric acid etching treatment with treated zirconia and hybrid zirconia groups.

Shear Performance of Board-type Two-way Voided Slab (일체형 중공재의 중공부 내부형상에 따른 이방향 중공슬래브의 전단성능 평가)

  • Choi, Hyeon-Min;Park, Tae-Won;Paik, In-Kwan;Kim, Je-Sub;Han, Ju-Yeon
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.651-659
    • /
    • 2015
  • Currently, social demands for long span building structures are increasing due to architectural planning purposes and economic efficiency. As a result, lighter board-type voiding materials were suggested. With the use of board-type voiding materials, a slab is able to become light weight and convenient. This process efficiently eliminates concrete where it is not required; considerably diminishing dead weight while maintaining the flexural strength of the slab. The reduction in concrete also allows for overall cost reductions and design flexibility. Also it can be ease with fixing the voided material that is composed of one body form. Although board-type voiding materials are ideal, the top and bottom concrete plates lack integrity. Because of this, test results show horizontal cracking towards the tops and bottoms of the concrete columns, or webs, connecting the slabs. The key to correcting this problem is to increase the shear strength. In order to increase the shear strength of the structure, horizontal shear area must increase. R70(100)-D-F has the largest horizontal shear area as it also shows stronger strength. As a result, shear strength ($V_{nh}$) is dependent on the horizontal shear area (N). $V_{nh}={\alpha}{\times}0.16{\sqrt{f_{ck}}}{\frac{{\pi}D^2}{4}}{\times}N({\alpha}=1.8125)$. The web columns have a shear span to depth ratio (a/d) that is less than 2; which classifies it as a deep beam. In this case, however, the shear strength of the deep beams may be as much as 2 to 3 times greater than that predicated conventional equations developed for members of normal proportions. As a result, ${\alpha}$ is suggested as an extra coefficient in the equation for shear strength ($V_{nh}$).

Micro-shear bond strengths of resin-matrix ceramics subjected to different surface conditioning strategies with or without coupling agent application

  • Gunal-Abduljalil, Burcu;Onoral, Ozay;Ongun, Salim
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.3
    • /
    • pp.180-190
    • /
    • 2021
  • Purpose. This study aimed to assess the influence of various micromechanical surface conditioning (MSC) strategies with or without coupling agent (silane) application on the micro-shear bond strength (µSBS) of resin- matrix ceramics (RMCs). Materials and Methods. GC Cerasmart (GC), Lava Ultimate (LU), Vita Enamic (VE), Voco Grandio (VG), and Brilliant Crios (BC) were cut into 1.0-mm-thick slices (n = 32 per RMC) and separated into four groups according to the MSC strategy applied: control-no conditioning (C), air-borne particle abrasion with aluminum oxide particles (APA), 2W- and 3W-Er,Cr:YSGG group coding is missing. The specimens in each group were further separated into silane-applied and silane-free subgroups. Each specimen received two resin cement microtubules (n = 8 per subgroup). A shear force was applied to the adhesive interface through a universal test machine and µSBS values were measured. Data were statistically analyzed by using 3-way ANOVA and Tukey HSD test. Failure patterns were scrutinized under stereomicroscope. Results. RMC material type, MSC strategy, and silanization influenced the µSBS values (P<.05). In comparison to the control group, µSBS values increased after all other MSC strategies (P<.05) while the differences among these strategies were insignificant (P>.05). For control and APA, there were insignificant differences between RMCs (P>.05). The silanization decreased µSBS values of RMCs except for VE. Considerable declines were observed in GC and BC (P<.05). Conclusion. MSC strategies can enhance bond strength values at the RMC - cement interface. However, the choice of MSC strategy is dependent on RMC material type and each RMC can require a dedicated way of conditioning.

Influence of sandblasting and primer on shear bond strength of resin cement to zirconia (샌드블라스팅과 프라이머가 지르코니아와 레진시멘트의 전단결합강도에 미치는 영향)

  • Lee, Jung-Haeng;Kim, Hyeong-Seob;Pae, Ah-Ran;Woo, Yi-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.1
    • /
    • pp.49-56
    • /
    • 2011
  • Purpose: The aim of this study was to evaluate the effect of mechanical, chemical surface treatments on the zirconia-to-resin cement shear bond strength (SBS). Materials and methods: Eighty zirconia discs (Lava, 3M ESPE) and eighty zirconia/alumina composite (Zirace, Acucera) were embedded in an epoxy resin base. Zirconia discs were randomly divided in to four treatment groups(10 for each manufacturer): $50\;{\mu}m$ $Al_2O_3$ sandblasting (S50), $110\;{\mu}m$ $Al_2O_3$ sandblasting (S110), $50\;{\mu}m$ $Al_2O_3$ and primer (Z-Prime Plus, Bisco Inc) (S50z) and $110\;{\mu}m$ $Al_2O_3$ and primer (Z-Prime Plus) (S110z). Two resin-based luting cements (Calibra, Panavia F) were used to build 2 mm diameter cylinders onto the zirconia. After 24 h of storage in water, SBS testing was evaluate using a universal testing machine. Bond strength data were analyzed with one-way ANOVA, two-way ANOVA test and post hoc comparison was done using Tukey test (${\alpha}$ = .05). Results: Groups using primer showed the high shear bond strength. The groups that did not use primer presented lower shear bond strengths. Conclusion: The use of primer (Z-Prime Plus, Bisco) had significantly higher shear bond strengths.

One-Way Shear Strength of Donut Type Biaxial Hollow Slab Considered Hollow Shapes and Materials (중공형상 및 재료의 영향을 고려한 도넛형 이방향 중공슬래브의 일방향 전단강도)

  • Chung, Joo-Hong;Lee, Seung-Chang;Choi, Chang-Sik;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.391-398
    • /
    • 2012
  • This paper presents the shear capacities of biaxial hollow slab with donut type hollow sphere. Recently, various types of slab systems which can reduce self-weight of slabs have been studied for increasing constructions of taller and larger building structures. A biaxial hollow slab system is widely known as one of the effective slab system, which can reduce self-weight of slab. According to previous studies, the hollow slab has low shear strength, compared to solid slab. Also, the shear capacities of biaxial hollow slab are influenced by the shapes and materials of hollow spheres. However, the current code does not provide a clear computation method for the shear strength of hollow slab. To verify the shear capacities of this hollow slab, one-way shear tests were performed. Four test specimens were used for test parameters. One was conventional RC slab and others were hollow slabs. The test parameters included two different shapes and materials of plastic balls. The shape parameters were donut and non-donut forms and the material parameters were general plastic and glass fiber plastic. The results showed that the shear strengths varied depending on hollow shapes and materials used in the slab.