• Title/Summary/Keyword: two-temperature

Search Result 12,503, Processing Time 0.038 seconds

Measurement of Thermo-Optic Coefficient of a Liquid Using a Cascade of Two Different Fiber Bragg Gratings

  • Kim, Kwang Taek;Kim, In Soo
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.95-99
    • /
    • 2013
  • We proposed and demonstrated a fiber optic sensor for detecting the thermo-optic coefficient of a liquid, based on a cascade of two different FBGs. One of the two FBGs was etched, and its cladding was removed, for evanescent wave coupling with an external liquid. The Bragg wavelength of the non-etched FBG was used as a reference for the temperature of the surrounding liquid. The refractive index (RI) and thermo-optic (T-O) coefficient of a liquid can be detected from the difference between the Bragg wavelengths of the two FBGs, and the variation of the difference in accordance with temperature.

Fractional effect in an orthotropic magneto-thermoelastic rotating solid of type GN-II due to normal force

  • Lata, Parveen;Himanshi, Himanshi
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.503-511
    • /
    • 2022
  • In this article, we have examined the effect of fractional order parameter in a two-dimensional orthotropic magneto-thermoelastic solid in generalized thermoelasticity without energy dissipation with fractional order heat transfer in the context of hall current, rotation and two-temperature due to normal force. Laplace and Fourier transform techniques are used to obtain the solution of the problem. The expressions for displacement components, stress components, current density components and conductive temperature are obtained in transformed domain and then in physical domain by using numerical inversion method. The effect of fractional parameter on all the components has been depicted through graphs. Some special cases are also discussed in the present investigation.

CPU Temperature on Traffic Processing between Two Servers

  • Lee, Sang-Bock;Kim, Hyun-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.871-877
    • /
    • 2005
  • The purpose of this paper is to identify the CPU temperatures on traffic processing between two servers system. To test this model, this research applies multi-generator and resource reservation protocol that produce various types of traffics. The empirical results indicate that $56^{\circ}C\mp9^{\circ}C$ of CPU temperature is suitable when 250-300 traffics with 10-15kb per a packet are supplied. And also, no jitter delay time is showed in these cases.

  • PDF

Temperature Dependence of Galvanomagnetic Properties in Thin Bi Film

  • Nam, S.W.
    • Journal of Magnetics
    • /
    • v.4 no.4
    • /
    • pp.111-114
    • /
    • 1999
  • Numerical calculation for temperature dependence of galvanomagnetic properties of thin bismuth films is pursued. The quasi-two dimensional system is treated in the perturbation formalism of previous study, where realistic screened potential due to impurity is assumed to be the only scattering channel. The potential is separated into pure two dimensional part and the remaining presumed perturbation part. Relaxation time and mobilities for both electron and hole are evaluated, then temperature dependence of the Hall coefficient and magnetoresistance is obtained. The broad minimum of magnetoresistnace is manifested, and the interpretation under the kinetic theory is made. Thickness dependence of the quantities are also shown, which are in good agreement with the expected quantum size effect.

  • PDF

Development of Compensation-Type Fire Detector Using Metal-Insulator-Transition Critical-Temperature Sensor (금속-절연체 전이 임계온도센서를 이용한 보상식 화재 감지기 개발)

  • Jung, Sun-Kyu;Kim, Hyun-Tak
    • Fire Science and Engineering
    • /
    • v.28 no.1
    • /
    • pp.26-30
    • /
    • 2014
  • A Compensation-type fire detector (CFD) is operated with two functions of a differential-temperature detector and as a fixed-temperature detector. The differential-temperature detector observes a rate of temperature increase, and the fixed-temperature detector measures a given fixed temperature. The differential-temperature detector does not observe the outbreak of fire in slowly increasing temperature conditions, whereas the fixed-temperature detector is not able to observe the outbreak of fire in conditions under predetermined temperature level. We developed a CFD to compensate for weaknesses of both detectors. To compensate for the disadvantages, a sensor of the sensor metal-insulator-transition critical-temperature sensor was used. Temperature coefficient of resistance is the sensitivity for sensor. At $55^{\circ}C$, temperature coefficient of resistance of metal-insulator-transition critical-temperature sensor was 14.15%. Temperature coefficient of resistance of thermistor was about 0.5%. This CFD was operated as two ways that fixed-temperature detector and differential-temperature detector in one sensor.

ON MEASURING THE WELDING TEMPERATURE OF CONNECTOR

  • Deng Jyh-jeng
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 1998.11a
    • /
    • pp.361-377
    • /
    • 1998
  • The measurement of welding temperature of connector is usually performed with an infra red temperature gauge. However, the factors, which influence the temperature measurement, are rarely known. This research used the welding temperature measurement of the connector as an example, applying the experimental design, in two-phase experiments, to search the affecting factors. In phase-I experiment, we used a resolution III, seven-factor fractional factorial design with two levels for each factor. The result showed that none of the factor was significant in affecting the welding temperature when the type I error ${\alpha}$ was 0.05. Next, we did the phase-II factorial experiment with three factors and each factor had three levels. The experiment showed the experimental time was significant in affecting the temperature measurement when the type I error ${\alpha}$ was 0.05. Further Duncan's multiple range tests on the second experimental data showed that the later the experimental time, the weaker the light intensity could have on the temperature measurement and the average of the highest temperatures was lower. Moreover, the later the experimental time, the smaller was the variance of the temperature measurement and the difference between the averages of the highest and the lowest temperatures was also lower.

  • PDF

Temperature network analysis of the Korean peninsula linking by DCCA methodology (DCCA 방법으로 연결된 한반도의 기온 네트워크 분석)

  • Min, Seungsik
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.7
    • /
    • pp.1445-1458
    • /
    • 2016
  • This paper derives a correlation coefficient using detrended cross-correlation analysis (DCCA) method for 59 regional temperature series for 40 years from 1976 to 2015. The average temperature, maximum temperature, and minimum temperature series for 4 year units are analyzed; consequently, we estimated that a temperature correlation exists between the two regions during the unit period where the correlation coefficient is greater than or equal to 0.9; subsequently, we construct a network linking the two regions. Based on network theory, average path length, clustering coefficient, assortativity, and modularity were derived. As a result, it was found that the temperature network satisfies a small-worldness property and is a network having assortativity and modularity.

Evaluation of Ground Temperature and Soil Thermal Diffusivity Using the Soil Temperature Data of KMA (기상청 지중 온도 데이터를 이용한 지중 온도 및 토양 열확산계수 산정)

  • Sohn, Byong-Hu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.7 no.1
    • /
    • pp.1-9
    • /
    • 2011
  • Storing and transferring heat in soils is governed by the soil thermal properties and these properties are therefore needed in many engineering applications, including horizontal ground heat exchanger for ground-coupled heat pumps. This paper presents the evaluation results of the ground subsurface temperature and apparent thermal diffusivity of soils by using ground temperature data collected at the depths of 0.5 m, 1.0 m, 1.5 m, 3.0 m, and 5.0 m at four sites. The existing correlation assuming that the soil was homogeneous and of constant thermal diffusivity was applied to calculate the subsurface temperature and two analytical equations, amplitude and phase equation, were also used to evaluate the soil apparent thermal diffusivity. Comparison of the estimated and of the measured values of the subsurface temperature has shown that the empirical correlation predicts quite accurately the ground temperature at various depths. Based on the one-dimensional heat conduction equation, the apparent thermal diffusivity can be estimated by the two equations.

Numerical Simulation of the Water Temperature in the Al-Zour Area of Kuwait

  • Lee, Myung Eun;Kim, Gunwoo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.3
    • /
    • pp.334-343
    • /
    • 2019
  • The Al-Zour coastal area, located in southern Kuwait, is a region of concentrated industrial water use, seawater intake, and the outfall of existing power plants. The Al-Zour LNG import facility project is ongoing and there are two issues regarding the seawater temperature in this area that must be considered: variations in water temperature under local meteorology and an increase in water temperature due to the expansion of the thermal discharge of expanded power plant. MIKE 3 model was applied to simulate the water temperature from June to July, based on re-analysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF) and the thermal discharge input from adjacent power plants. The annual water temperatures of two candidate locations of the seawater intake for the Al-Zour LNG re-gasification facility were measured in 2017 and compared to the numerical results. It was determined that the daily seawater temperature is mainly affected by thermal plume dispersion oscillating with the phase of the tidal currents. The regional meteorological conditions such as air temperature and tidal currents, also contributed a great deal to the prediction of seawater temperature.

A Study of DITI in Women with Premenstrual Syndrome (월경전증후군 환자의 적외선 체열영상 소견에 관한 후향적 연구)

  • Hwang, Deok-Sang;Cho, Jung-Hoon;Lee, Chang-Hoon;Lee, Jin-Moo;Jang, Jun-Bock;Lee, Kyung-Sub
    • Journal of Oriental Medical Thermology
    • /
    • v.6 no.1
    • /
    • pp.8-15
    • /
    • 2008
  • Purpose: Although premsnstrual syndromes(PMS) have long been recognized, there has been difficulty to evaluate the symtoms. Usually the questionnaire has been used to dignose the PMS. Objective is to investigate the relationship of body temperature between women with PMS and without PMS. Methods: We studied 23 patients visiting OO hospital from 26th December 2005 to 26th April 2006. The Questionnaire for PMS was used to evaluate physical, emotional, and behavioral symptoms accompanying the menstrual cycle of the subjects. The subjects were categorized in two groups, non-PMS(11) and PMS group(12). Body temperature was assessed by Dorex spectrum 9000MB (DOREX Inc., USA). We measured CV4, CV3, CV12 and CV17 to evaluate the distribution of body temperature, compared the difference of temperature(${\Delta}T$) between CV17-CV4, CV17-CV3, CV17-CV12 and CV12-CV3. We investigated the of temperature and ${\Delta}T$ between two groups by Mann-Whitney U-test. Results: The temperature of CV3 and CV4 of PMS located in low abdomen were lower than those of non-PMS located in chest. But there was no statistical significance of temperature between two groups. There was lower temperature of low abdomen in PMS group than non-PMS group without statistical significance. Conclusion: The results suggest that DITI could be useful to assess the PMS objectively. But more research should be needed.

  • PDF