• Title/Summary/Keyword: two-dimensional electron gas

Search Result 76, Processing Time 0.027 seconds

Spin Transport in a Ferromagnet/Semiconductor/Ferromagnet Structure: a Spin Transistor

  • Lee, W.Y;Bland, J.A.C
    • Journal of Magnetics
    • /
    • v.7 no.1
    • /
    • pp.4-8
    • /
    • 2002
  • The magnetoresistance (MR) and the magnetization reversal of a lateral spin-injection device based on a spin-polarized field effect transistor (spin FET) have been investigated. The device consists of a two-dimensional electron gas (2DEG) system in an InAs single quantum well (SQW) and two ferromagnetic $(Ni_{80}Fe_{20})$ contacts: all injector (source) and a detector (drain). Spin-polarized electrons are injected from the first contact and, after propagating through the InAs SQW are collected by the second contact. By engineering the shape of the permalloy contacts, we were able to observe distinct switching fields $(H_c)$ from the injector and the collector by using scanning Kerr microscopy and MR measurements. Magneto-optic Kerr effect (MOKE) hysteresis loops demonstrate that there is a range of magnetic field (20~60 Oe), at room temperature, over which the magnetization in one contact is aligned antiparallel to that in the other. The MOKE results are consistent with the variation of the magnetoresistance in the spin-injection device.

A novel ceramic GEM used for neutron detection

  • Zhou, Jianrong;Zhou, Xiaojuan;Zhou, Jianjin;Jiang, Xingfen;Yang, Jianqing;Zhu, Lin;Yang, Wenqin;Yang, Tao;Xu, Hong;Xia, Yuanguang;Yang, Gui-an;Xie, Yuguang;Huang, Chaoqiang;Hu, Bitao;Sun, Zhijia;Chen, Yuanbo
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1277-1281
    • /
    • 2020
  • A novel ceramic Gas Electron Multiplier (GEM) has been developed to meet the demand of high counting rate for the neutron detection which is an alternative to 3He-based detector at China Spallation Neutron Source (CSNS). An experiment was performed to measure the neutron transmittance of ceramic-GEM and FR4-GEM at the small angle neutron scattering (SANS) instrument. The result showed the ceramic-GEM has higher transmittance and less self-scattering especially for cold neutrons. One single ceramic GEM could give a gain of 102-104 in the mixture gas of Ar and CO2 (90%:10%) and its energy resolution was about 27.7% by using 55Fe X ray of 5.9 keV. A prototype has been developed in order to investigate the performances of the ceramic GEM-based neutron detector. Several neutron beam tests, including detection efficiency, spatial resolution, two-dimensional imaging, and wavelength spectrum, were carried out at CSNS and China Mianyang Research Reactor (CMRR). The results show that the ceramic GEM-based neutron detector is a good candidate to measure the high intensity neutrons.

Hollow SnO2 Hemisphere Arrays for Nitric Oxide Gas Sensing

  • Hoang, Nhat Hieu;Nguyen, Minh Vuong;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.23 no.12
    • /
    • pp.667-671
    • /
    • 2013
  • We present an easy method of preparing two-dimensional (2D) periodic hollow tin oxide ($SnO_2$) hemisphere array gas sensors using polystyrene (PS) spheres as a template. The structures were fabricated by the sputter deposition of thin tin (Sn) metal over an array of PS spheres on a planar substrate followed by calcination at an elevated temperature to oxidize Sn to $SnO_2$ while removing the PS template cores. The $SnO_2$ hemisphere array structures were examined by scanning electron microscopy and X-ray diffraction. The structures were calcined at various temperatures and their sensing properties were examined with varying operation temperatures and concentrations of nitric oxide (NO) gas. Their gas-sensing properties were investigated by measuring the electrical resistances in air and the target gases. The measurements were conducted at different NO concentrations and substrate temperatures. A minimum detection limit of 30 ppb, showing a sensitivity of S = 1.6, was observed for NO gas at an operation temperature of $150^{\circ}C$ for a sample having an Sn metal layer thickness corresponding to 30 sec sputtering time and calcined at $600^{\circ}C$ for 2 hr in air. We proved that high porosity in a hollow $SnO_2$ hemisphere structure allows easy diffusion of the target gas molecules. The results confirm that a 2D hollow $SnO_2$ hemisphere array structure of micronmeter sizes can be a good structural morphology for high sensitivity gas sensors.

Oxygen Plasma Effect on AlGaN/GaN HEMTs Structure Grown on Si Substrate

  • Seo, Dong Hyeok;Kang, Sung Min;Lee, Dong Wha;Ahn, Du Jin;Park, Hee Bin;Ahn, Youn Jun;Kim, Min Soo;Kim, Yu Kyeong;Lee, Ho Jae;Song, Dong Hun;Kim, Jae Hee;Bae, Jin Su;Cho, Hoon Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.420-420
    • /
    • 2013
  • We investigated oxygen plasma effect on defect states near the interface of AlGaN/GaN High Electron Mobility Transistor (HEMT) structure grown on a silicon substrate. After the plasma treatment, electrical properties were evaluated using a frequency dependant Capacitance-Voltage (C-V) and a temperature dependant C-V measurements, and a deep level transient spectroscopy (DLTS) method to study the change of defect densities. In the depth profile resulted from the temperature dependant C-V, a sudden decrease in the carrier concentration for two-dimensional electron gas (2DEG) nearby 250 K was observed. In C-V measurement, the interface states were improved in case of the oxygen-plasma treated samples, whereas the interface was degraded in case of the nitrogen-plasma treated sample. In the DLTS measurement, it was observed the two kinds of defects well known in AlGaN/GaN structure grown on sapphire substrate, which have the activation energies of 0.15 eV, 0.25 eV below the conduction band. We speculate that this defect state in AlGaN/GaN on the silicon substrate is caused from the decrease in 2DEG's carrier concentrations. We compared the various DLTS signals with filling pulse times to identify the characteristics of the newly found defect. In the filling pulse time range under the 80 us, the activation energies changed as the potential barrier model. On the other hand, in the filling pulse time range above the 80 us, the activation energies changed as the extended potential model. Therefore, we suggest that the found defect in the AlGaN/GaN/Si structure could be the extended defect related with AlGa/N/GaN interface states.

  • PDF

Optimization of the Gate Field-Plate Structure for Improving Breakdown Voltage Characteristics. (AlGaN/GaN HEMT의 항복전압특성 향상을 위한 게이트 필드플레이트 구조 최적화)

  • Son, Sung-Hun;Jung, Kang-Min;Kim, Su-Jin;Kim, Tae-Geun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.337-337
    • /
    • 2010
  • 갈륨-질화물 (GaN) 기반의 고 전자 이동도 트랜지스터 (High Electron Mobility Transistor, HEMT)는 GaN의 큰 밴드갭 (3.4~6.2 eV), 높은 항복전계 (Ec~3 MV/cm) 및 높은 전자 포화 속도 (saturation velocity $-107\;cm{\cdot}s-1$) 특성과 AlGaN/GaN 등과 같은 이종접합구조(Heterostructure )로부터 발생하는 높은 면밀도(Sheet Concentration)를 갖는 이차원 전자가스(Two-Dimensional Electron Gas, 2DEG) 채널로 인해 차세대 고출력/고전압 소자로서 각광받고 있다. 하지만 드레인 쪽의 게이트 에지부분에 집중되는 전계로 인한 애벌린치 할복현상(Breakdown)이 발생하는 문제점이 있다. 따라서 AlGaN/GaN HEMT의 항복전압 향상을 위한 방법으로 필드플레이트(Field-Plate) 구조가 많이 사용되고 있다. 본 논문에서는 2D 시뮬레이션을 통한 AlGaN/GaN HEMT의 필드플레이트 구조 최적화를 수행하였다. 이를 위해 ATLASTM 전산모사 프로그램을 이용하여 필드플레이트 길이, 절연체 증류 및 두께에 따른 전류 전압 특성 및 전계 분산효과에 대한 전산모사를 수행하여 그 결과를 비교, 분석 하였다, 이를 바탕으로 기존의 구조에 비해 약 300%이상 향상된 항복전압을 갖는 AlGaN/GaN HEMT의 최적화된 필드 플레이트 구조를 제안하였다.

  • PDF

트렌치 구조의 소스와 드레인을 이용한 AlGaN/GaN HEMT의 DC 출력특성 전산모사

  • Jeong, Gang-Min;Lee, Yeong-Su;Kim, Su-Jin;Kim, Jae-Mu;Kim, Dong-Ho;Choe, Hong-Gu;Han, Cheol-Gu;Kim, Tae-Geun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.145-145
    • /
    • 2008
  • 갈륨-질화물(GaN) 기반의 고속전자이동도 트랜지스터(high electron mobility transistor, HEMT)는 최근 마이크로파 또는 밀리미터파 등의 차세대 고주파용 전력소자로 각광받고 있다. AlGaN/GaN HEMT는 이종접합구조(heterostructure) 로부터 발생하는 이차원 전자가스(two-dimensional electron gas, 2DEG) 채널을 이용하여 높은 전자 이동도, 높은 항복전압 및 우수한 고출력 특성을 얻는 것이 가능하다. AlGaN/GaN HEMT에서 ohmic 전극 부분과 채널이 형성되는 부분과의 거리에 의한 저항의 성분을 줄이고 전자의 터널링의 확률을 증가시키기 위해서 recess된 구조가 많이 사용되고 있다. 그러나 이 구조에서는 recess된 소스와 드레인에 의해 AlGaN층의 제거로 AlGaN층의 두께에 영향을 미치며 그에 따라 채널에 생성되는 전자의 농도를 변화시키게 된다. 본 논문에서는 소스와 드레인의 Trench 구조를 제안하였다. ohmic 전극 부분과 채널간의 거리의 감소로 특성을 향상시켜서 recess 구조의 장점이 유지된다. 그리고 recess되는 소스와 드레인 영역에서 AlGaN층을 전체적으로 제거하는 것이 아니고 Trench 즉 일부분만 제거하면서 AlGaN층의 두께의 변화에 따른 문제점도 줄일 수 있다. 따라서 이러한 전극 부분을 Trench구조화 시킨 AlGaN/GaN HEMT의 DC특성을 $ATLAS^{TM}$를 이용하여 전산모사하고 최적화된 구조를 제안하였다.

  • PDF

Characterization of Inductively Coupled Ar/CH4 Plasma using the Fluid Simulation (유체 시뮬레이션을 이용한 유도결합 Ar/CH4 플라즈마의 특성 분석)

  • Cha, Ju-Hong;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1376-1382
    • /
    • 2016
  • The discharge characteristics of inductively coupled $Ar/CH_4$ plasma were investigated by fluid simulation. The inductively coupled plasma source driven by 13.56 Mhz was prepared. Properties of $Ar/CH_4$ plasma source are investigated by fluid simulation including Navier-Stokes equations. The schematics diagram of inductively coupled plasma was designed as the two dimensional axial symmetry structure. Sixty six kinds of chemical reactions were used in plasma simulation. And the Lennard Jones parameter and the ion mobility for each ion were used in the calculations. Velocity magnitude, dynamic viscosity and kinetic viscosity were investigated by using the fluid equations. $Ar/CH_4$ plasma simulation results showed that the number of hydrocarbon radical is lowest at the vicinity of gas feeding line due to high flow velocity. When the input power density was supplied as $0.07W/cm^3$, CH radical density qualitatively follows the electron density distribution. On the other hand, central region of the chamber become deficient in CH3 radical due to high dissociation rate accompanied with high electron density.

Quanrum Ballistic Transport in a Two-Dimensional Electron Gas (2차원 전자개스에서 양자 탄동적 수송현상)

  • 최점수;정문성
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.2
    • /
    • pp.224-229
    • /
    • 1995
  • 쌍곡선 모델을 사용하여 미시 통로죔을 통과하는 2차원 전자들의 양자 탄동적 수송현상을 연구하였다. 통로죔은 타원좌표계($\alpha$, $\beta$)에서 $\beta$=$\beta$o, $\pi$-$\beta$o로 주어지는 두 쌍곡선으로 기술하였다. 양자화된 88컨덕턴스 G는 타원좌표계에서 주어진 슈뢰딩거 방정식과 쌍곡선 경계조건을 만족하는 짝 매튜 함수를 이용하여 계산하였다. 그 결과는 채널수 Nc는 통로죔 폭 W뿐만 아니라 곡률 관련좌표 $\beta$o에 의존함을 나타내었다. 또한 곡률에 의존하는 터널링도 양자화된 G의 그래프의 모양을 나타내는 중요한 요소임을 나타내 주었다. 고정된 통로폭에서 Nc가 일정한 $\beta$o영역에서는 $\beta$o의 연속적 변화에 G는 연속적으로 변화하였지만 $\beta$o가 크게 변화할 때는 Nc가 변화하여 G는 불연속적으로 변화하였다. 만일 터널링이 거의 허용이 안되는 $\beta$o의 영역에서는 G는 계단식의 변화만 보여주었다.

  • PDF

A Study on HEMT Device Process (Part II. Ohmic Contact Resistance in GaAs/AlGaAs Hetero-Structure) (HEMT소자 공정 연구 (Part II. HEMT 구조에서의 Online 접촉저항))

  • 이종람;이재진;박성호;김진섭;마동성
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.10
    • /
    • pp.1545-1553
    • /
    • 1989
  • The ohmic contact behavior in HEMT structure was compared with that in MESFET one throughout the specific contact resistance and microstructural change in both structures. A Au-Ge-Ni based metallization scheme was used and the alloying temperature of the ohmic materials was changed from 330\ulcorner to 550\ulcorner. The alloying temperature to obtain the minimum specific contact resistance in HEMT structure was 60k higher than that in MESFET. The volume fraction of NiAs (Ge) in MESFET structure increases with alloying temperature and/or the alloying time, which makes the decrease of specific contact resistance at the initial stage of ohmic metallization. In contrast, the volume fraction of NiAs(Ge) in HEMT structure was not dependent upon the specific contact resistance, which implies that the ohmic contacts are dominantly formed by the Ge diffusion to 2-DEG(two dimensional electron gas) layer.

  • PDF

Deformation of the AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistor characteristics by UV irradiation

  • Lim, Jin Hong;Kim, Jeong Jin;Yang, Jeon Wook
    • Journal of IKEEE
    • /
    • v.17 no.4
    • /
    • pp.531-536
    • /
    • 2013
  • The impact of UV irradiation process on the AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistor was investigated. Due to the high intensity UV irradiation before the gate dielectric deposition, the conductivity of AlGaN/GaN structure and the drain saturation current of the transistor increased by about 10 %. However, the pinch off characteristics of transistor was severely deformed by the process. By comparing the electrical characteristics of the transistors, it was proposed that the high intensity UV irradiation formed a sub-channel under the two dimensional electron gas of AlGaN/GaN structure even without additional impurity injection.