• Title/Summary/Keyword: two-dimensional electron gas

Search Result 76, Processing Time 0.079 seconds

Two-Dimensional Electron Gas (2DEG) at $Ta_2O_5/SrTiO_3$ Heterointerface

  • Joung, Jin Gwan;Yoo, Kwang Soo;Kim, Jin Sang;Baek, Seung-Hyub
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.161-161
    • /
    • 2013
  • Two-dimensional electron gas (2DEG) has been investigated at the heterointerface between two insulating dielectric perovskite oxides, $LaAlO_3$ (LAO)/$SrTiO_3$ (STO). Properties of the 2DEG have attracted an enormous interest in condensed matter physics due to multifunctional properties such as the coexistence of ferromagnetism and superconductivity, as well as the high electron mobility. Here, we have grown $Ta_2O_5$ thin films using pulsed laser deposition on $SrTiO_3$ substrate to investigate the electric properties of the $Ta_2O_5$/STO heterointerface. Our research reveal that the non-polar $Ta_2O_5$/$TiO_2$ heterointerface favors the formation of 2DEG similar to that at the LAO/STO heterointerface. The metallic behavior was found in this heterointerface with the current about $10{\sim}100{\mu}A$ at 5 V by using conventional I-V measurements, when the $Ta_20_5$ film thickness reaches over critical thickness, $d_c{\simeq}2uc$. The finding that electrons was localized at $Ta_2O_5$/STO heterointerface have attracted to be strong and new candidate for nanoscale oxide device applications.

  • PDF

Electron mobility and low temperature magnetoresistance effect in $Si/Si_{1-x}Ge_x$ quantum well devices ($Si/Si_{1-x}Ge_x$Quantum Well 디바이스에서의 전자이동도 및 저온 자기저항효과)

  • 김진영
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.2
    • /
    • pp.148-152
    • /
    • 1999
  • the low temperature magnetoresistance effect, electron mobilities, and 2 Dimensional electron Gases (2DEG) properties were investigated in $Si/Si_{1-x}Ge_x$ quantum well devices. N-type $Si/Si_{1-x}Ge_x$ structures were fabricated by utilizing a gas source Molecular Beam Epitaxy (GSMBE). Thermal oxidation was carried out in a dry O atmosphere at $700^{\circ}C$ for 7 hours. Electron mobilities were measured by using a Hall effect and a magnetoresistant effect at low temperatures down to 0.4K. Pronounced Shubnikov-de Haas (SdH) oscillations were observed at a low temperature showing two dimensional electron gases (2DEG) in s tensile strained Si quantum well. The electron sheet density (ns) of $1.5\times10^{12}[\textrm{cm}^{-2}]$ and corresponding electron mobility of 14200 $[\textrm{cm}^2V^{-1}s^{-1}]$ were obtained at a low temperature of 0.4K from $Si/Si_{1-x}Ge_x$ structures with thermally grown oxides.

  • PDF

Hole Defects on Two-Dimensional Materials Formed by Electron Beam Irradiation: Toward Nanopore Devices

  • Park, Hyo Ju;Ryu, Gyeong Hee;Lee, Zonghoon
    • Applied Microscopy
    • /
    • v.45 no.3
    • /
    • pp.107-114
    • /
    • 2015
  • Two-dimensional (2D) materials containing hole defects are a promising substitute for conventional nanopore membranes like silicon nitride. Hole defects on 2D materials, as atomically thin nanopores, have been used in nanopore devices, such as DNA sensor, gas sensor and purifier at lab-scale. For practical applications of 2D materials to nanopore devices, researches on characteristics of hole defects on graphene, hexagonal boron nitride and molybdenum disulfide have been conducted precisely using transmission electron microscope. Here, we summarized formation, features, structural preference and stability of hole defects on 2D materials with atomic-resolution transmission electron microscope images and theoretical calculations, emphasizing the future challenges in controlling the edge structures and stabilization of hole defects. Exploring the properties at the local structure of hole defects through in situ experiments is also the important issue for the fabrication of realistic 2D nanopore devices.

Quantum Mechanical Analysis for the Numerical Calculation of Two-Diemensional Electron Gas(2DEG) in Single-Heterojunction Structures (단일 이종접합 구조에서의 2차원 전자개스(2DEG)의 수치적 연산을 위한 양자역학적 분석)

  • Hwang, Kwang-Chuel;Kim, Jin-Wook;Won, Chang-Sub;Ahn, Hyung-Keun;Han, Deuk-Young
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.10
    • /
    • pp.564-569
    • /
    • 2000
  • This paper analyzed single AlGaAs/GaAa heterojunction energy band structures by solving Schr dinger's equation and Poisson's equation self-consistently. Four different concentrations, positively ionized donors, holes in the valence band, free electrons in the conduction band and 2DEG are taken into account for the whole system. 2DEG from both of the structures are obtained and compared with the date available in the literatures. Differential capacitances are also calculated from the concentration profiles obtained to prove the validity of the single AlGaAs/GaAs system. Finally, theoretical predictions for both of 2DEGs and the capacitances show good agreement with the experimental data referred in this study. It has only an error of les than 10 percent.

  • PDF

Metalorganic VPE growth of GaInP and related semiconductors for mobile communication device application

  • Udagawa, Takashi
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.5
    • /
    • pp.207-210
    • /
    • 2001
  • Metal-organic VPE (MOVPE) epitaxial growth procedure and related device fabrication technique are reported for GaInP-based epitaxial materials and devices. For GaInP/GaInAs two-dimensional electron-gas field-effect transistor (TEGFET), a promising epitaxial stacking structure resulting in enhanced electron mobility is given. In conjunction with this, a new device fabrication technique to improve luminous intensity of GaInP-based LED is also shown.

  • PDF

Two-dimensional simulation of corona discharge characteristics in nitrogen (질소가스에 대한 2차원 코로나 방전특성 해석)

  • Choi, Jong-Dae;Shim, Jae-Hak;Ko, Kwang-Cheo;Kang, Hyung-Boo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1834-1836
    • /
    • 1997
  • In this study, we simulated the developing process of two-dimensional corona discharge using the fluid method in 760 torr. It was assumed that the transport coefficients of nitrogen gas were only the function of local electric field. Discharge mechanisms considered were a Townsend first ionization and a secondary electron emission. We obtained spatio-temporal distribution of electron and ion by calculating continuity equation using FCT algorithm and calculated an electric field distribution considering a space charge.

  • PDF

Simulation of Inductively Coupled $Ar/O_2$ Plasma; Effects of Operating Conditions on Plasma Properties and Uniformity of Atomic Oxygen

  • Park, Seung-Kyu;Kim, Jin-Bae;Kim, Heon-Chang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.4
    • /
    • pp.59-63
    • /
    • 2009
  • This paper presents two dimensional simulation results of an inductively coupled $Ar/O_2$ plasma reactor. The effects of operating conditions on the plasma properties and the uniformity of atomic oxygen near the wafer were systematically investigated. The plasma density had the linear dependence on the chamber pressure, the flow rate of the feed gas and the power deposited into the plasma. On the other hand, the electron temperature decreased almost linearly with the chamber pressure and the flow rate of the feed gas. The power deposited into the plasma nearly unaffected the electron temperature. The simulation results showed that the uniformity of atomic oxygen near the wafer could be improved by lowering the chamber pressure and/or the flow rate of the feed gas. However, the power deposited into the plasma had an adverse effect on the uniformity.

  • PDF

Low temperature electron mobility property in Si/$Si_{1-x}Ge_{x}$ modulation doped quantum well structure with thermally grown oxide

  • Kim, Jin-Young
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.4 no.1
    • /
    • pp.11-17
    • /
    • 2000
  • The low temperature electron mobilities were investigated in Si/$Si_{1-x}Ge_{x}$ modulation Doped (MOD) quantum well structure with thermally grown oxide. N-type Si/$Si_{1-x}Ge_{x}$ structures were fabricated by a gas source MBE. Thermal oxidation was carried out in a dry $O_2$ atmosphere at $700^{\circ}C$ for 7 hours. Electron mobilities were measured by a Hall effect and a magnetoresistant effect at low temperatures down to 0.4 K. Pronounced Shubnikov-de Haas (SdH) oscillations were observed at a low temperature showing two dimensional electron gases (2 DEG) in a tensile strained Si quantum well. The electron sheet density ($n_{s}$) of 1.5${\times}$$10^{12}$[$cm^{-2}$] and corresponding electron mobility of 14200 [$cm^2$$V^{-1}$$s^{-1}$] were obtained at low temperature of 0.4 K from Si/$Si_{1-x}Ge_{x}$ MOD quantum well structure with thermally grown oxide.

  • PDF