• Title/Summary/Keyword: two layer modeling

Search Result 235, Processing Time 0.033 seconds

Modeling the human memory in nerve fields

  • Fujita, Osamu;Kakazu, Yukinori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.70-73
    • /
    • 1992
  • This paper describes the modeling of human memory using a nerve field model which is proposed for modeling the mechanism of brain mathematically. In our model, two phases of memory, retention and recollection, are focused on. The former consists of two stages, short-term memory (STM) and long-term memory (LTM). The proposed model consists of three parts, the STM Layer, LTM Layer and the Intermediate Layer between them. Each of these is constructed by a nerve field. In the STM Layer, memorized information is retained dynamically in the form of the reverberating states of units within the layer, while in the LTM Layer, it is stored statically in the form of structures of the weight on the links between units. the Intermediate Layer is introduced to translate this dynamic representation in the STM Layer to the LTNI Layer, and also to extract the static information from the STM Layer. In addition to this, we consider the recollection of information stored in the LTM. Finally, the behavior of this model is demonstrated by computer simulation.

  • PDF

G-Networks Based Two Layer Stochastic Modeling of Gene Regulatory Networks with Post-Translational Processes

  • Kim, Ha-Seong;Gelenbe, Erol
    • Interdisciplinary Bio Central
    • /
    • v.3 no.2
    • /
    • pp.8.1-8.6
    • /
    • 2011
  • Background: Thanks to the development of the mathematical/statistical reverse engineering and the high-throughput measuring biotechnology, lots of biologically meaningful genegene interaction networks have been revealed. Steady-state analysis of these systems provides an important clue to understand and to predict the systematic behaviours of the biological system. However, modeling such a complex and large-scale system is one of the challenging difficulties in systems biology. Results: We introduce a new stochastic modeling approach that can describe gene regulatory mechanisms by dividing two (DNA and protein) layers. Simple queuing system is employed to explain the DNA layer and the protein layer is modeled using G-networks which enable us to account for the post-translational protein interactions. Our method is applied to a transcription repression system and an active protein degradation system. The steady-state results suggest that the active protein degradation system is more sensitive but the transcription repression system might be more reliable than the transcription repression system. Conclusions: Our two layer stochastic model successfully describes the long-run behaviour of gene regulatory networks which consist of various mRNA/protein processes. The analytic solution of the G-networks enables us to extend our model to a large-scale system. A more reliable modeling approach could be achieved by cooperating with a real experimental study in synthetic biology.

Microstructural modeling of two-way bent shape change of composite two-layer beam comprising a shape memory alloy and elastoplastic layers

  • Belyaev, Fedor S.;Evard, Margarita E.;Volkov, Aleksandr E.;Volkova, Natalia A.;Vukolov, Egor A.
    • Smart Structures and Systems
    • /
    • v.30 no.3
    • /
    • pp.245-253
    • /
    • 2022
  • A two-layer beam consisting of an elastoplastic layer and a functional layer made of shape memory alloy (SMA) TiNi is considered. Constitutive relations for SMA are set by a microstructural model capable to calculate strain increment produced by arbitrary increments of stress and temperature. This model exploits the approximation of small strains. The equations to calculate the variations of the strain and the internal variables are based on the experimentally registered temperature kinetics of the martensitic transformations with an account of the crystallographic features of the transformation and the laws of equilibrium thermodynamics. Stress and phase distributions over the beam height are calculated by steps, by solving on each step the boundary-value problem for given increments of the bending moment (or curvature) and the tensile force (or relative elongation). Simplifying Bernoulli's hypotheses are applied. The temperature is considered homogeneous. The first stage of the numerical experiment is modeling of preliminary deformation of the beam by bending or stretching at a temperature corresponding to the martensitic state of the SMA layer. The second stage simulates heating and subsequent cooling across the temperature interval of the martensitic transformation. The curvature variation depends both on the total thickness of the beam and on the ratio of the layer's thicknesses.

Prediction of Sprinkler activation time using two-layer zonal model (Zone 모델을 이용한 스프링클러의 작동시간 예측)

  • 김명배;한용식;윤명오
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.15-18
    • /
    • 1996
  • A general description of sprinkler activation time in compartment-fire-generated smoke layers is made. For calculation of the time hot layer temperature is obtained from two-layer zonal model and time constant of sprinkler is measured. Upper-layer thickness at the instant of sprinkler activation is also presented with changes of opening area. The outputs of the present study provide inputs for the interaction modeling of sprinkler spray and compartment fire environment, which simulates fire suppression phenomena.

  • PDF

Study on the Conjugate Heat Transfer Analysis Methodology of Thermal Barrier Coating on the Internal Cooled Nozzle (내부냉각노즐의 열차폐코팅을 위한 복합열전달 해석기법 연구)

  • Kim, Inkyom;Kim, Jinuk;Rhee, Dong-Ho;Cho, Jinsoo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.3
    • /
    • pp.38-45
    • /
    • 2015
  • In this study, two computational methodologies were compared to consider an effective conjugate heat transfer analysis technique for the cooled vane with thermal barrier coating. The first one is the physical modeling method of the TBC layer on the vane surface, which means solid volume of the TBC on the vane surface. The second one is the numerical modeling method of the TBC layer by putting the heat resistance interface condition on the surface between the fluid and solid domains, which means no physical layer on the vane surface. For those two methodologies, conjugate heat transfer analyses were conducted for the cooled vane with TBC layer having various thickness from 0.1 mm to 0.3 mm. Static pressure distributions for two cases show quite similar patterns in the overall region while the physical modeling shows quite a little difference around the throat area. Thermal analyses indicated that the metal temperature distributions are quite similar for both methods. The results show that the numerical modeling method can reduce the computational resources significantly and is quite suitable method to evaluate the overall performance of TBC even though it does not reflect the exact geometry and flow field characteristics on the vane surface.

Shielding effect model and Signal Switching in the multi-layer interconnects (다층 배선에서 차폐효과 모델 및 스위칭에 미치는 영향)

  • 진우진;어영선
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.1145-1148
    • /
    • 1998
  • New capacitance modeling and transient analysis for multi-layer interconnects with shielding effect are presented. The upper layer capacitances with under-layer shielding lines are represented by introducing a filling factor η which can be defined as the ratio of upper-layer line length to the total under-layer line width. The upper-layer effective self capacitances considering two extreme cases which the underlayer metals are assumed as a ground or as a Vdd are modeled. The signal transient analysis with shielding effect model is performed.

  • PDF

Layered Video Content Modeling and Browsing (계층화된 비디오 내용 모델링 및 브라우징)

  • Bok, Kyoung-Soo;Lee, Nak-Gyu;Heo, Jeong-Pil;Yoo, Jae-Soo;Cho, Ki-Hyung;Lee, Byoung-Yup
    • The KIPS Transactions:PartD
    • /
    • v.10D no.7
    • /
    • pp.1115-1126
    • /
    • 2003
  • In this paper, we propose modeling method for video data that represents structural and semantic contents of video data efficiently. Also, a browsing method that helps users easily understand and play the contents of video data is presented. The proposed modeling scheme consists of three layers such as raw data layer, content layer and key frame layer The content layer represents logical hierarchy and semantic contents of video data. We implement two kinds of browsers for playing video data and providing video contents. The playing browser plays video data and Presents the information of currently playing shot. The content browser allows users to browse raw data, structural information and semantic contents of video data.

Analysis of the Numerical Simulation Accuracy in the CFRP-Al Alloy SPR Joint Process According to the CFRP Modeling Method (CFRP 모델링 기법에 따른 CFRP-Al합금 SPR 접합공정의 수치해석 정확도 분석)

  • Kim, S.H.;Park, N.;Song, J.H.;Noh, W.;Park, K.Y.;Bae, G.
    • Transactions of Materials Processing
    • /
    • v.29 no.5
    • /
    • pp.265-271
    • /
    • 2020
  • The purpose of this paper is to analyze the numerical simulation accuracy according to the CFRP modeling method in the CFRP-Al alloy SPR (Self-Piercing Rivet) joint process. The mechanical properties of the CFRP, aluminum sheet are precisely obtained from the tensile test according to the loading direction. Additionally, the hardening curve of rivet was calculated from the inverse analysis of the machined rivet-ring compression test. For the CFRP-Al alloy SPR simulation, two kinds of the CFRP modeling methods were established based on the continuum and layer-by-layer approaches. The simulation results showed that the CFRP layer-by-layer modeling method can provide more reliable prediction shape of the fractured sheets and deformed rivet. This simulation technique can be used in evaluating the CFRP-Metal SPR performance and designing the SPR process conditions.

Computational modeling of the atmospheric boundary layer using various two-equation turbulence models

  • Juretic, Franjo;Kozmar, Hrvoje
    • Wind and Structures
    • /
    • v.19 no.6
    • /
    • pp.687-708
    • /
    • 2014
  • The performance of the $k-{\varepsilon}$ and $k-{\omega}$ two-equation turbulence models was investigated in computational simulations of the neutrally stratified atmospheric boundary layer developing above various terrain types. This was achieved by using a proposed methodology that mimics the experimental setup in the boundary layer wind tunnel and accounts for a decrease in turbulence parameters with height, as observed in the atmosphere. An important feature of this approach is pressure regulation along the computational domain that is additionally supported by the nearly constant turbulent kinetic energy to Reynolds shear stress ratio at all heights. In addition to the mean velocity and turbulent kinetic energy commonly simulated in previous relevant studies, this approach focuses on the appropriate prediction of Reynolds shear stress as well. The computational results agree very well with experimental results. In particular, the difference between the calculated and measured mean velocity, turbulent kinetic energy and Reynolds shear stress profiles is less than ${\pm}10%$ in most parts of the computational domain.

Modeling of Electrolyte Thermal Noise in Electrolyte-Oxide-Semiconductor Field-Effect Transistors

  • Park, Chan Hyeong;Chung, In-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.1
    • /
    • pp.106-111
    • /
    • 2016
  • Thermal noise generated in the electrolyte is modeled for the electrolyte-oxide-semiconductor field-effect transistors. Two noise sources contribute to output noise currents. One is the thermal noise generated in the bulk electrolyte region, and the other is the thermal noise from the double-layer region at the electrolyte-oxide interface. By employing two slightly-different equivalent circuits for two noise current sources, the power spectral density of output noise current is calculated. From the modeling and simulated results, the bulk electrolyte thermal noise dominates the double-layer thermal noise. Electrolyte thermal noise are computed for three different concentrations of NaCl electrolyte. The derived formulas give a good agreement with the published experimental data.