DOI QR코드

DOI QR Code

Modeling of Electrolyte Thermal Noise in Electrolyte-Oxide-Semiconductor Field-Effect Transistors

  • Park, Chan Hyeong (Department of Electronics and Communications Engineering, Kwangwoon University) ;
  • Chung, In-Young (Department of Electronics and Communications Engineering, Kwangwoon University)
  • Received : 2015.09.03
  • Accepted : 2015.11.27
  • Published : 2016.02.28

Abstract

Thermal noise generated in the electrolyte is modeled for the electrolyte-oxide-semiconductor field-effect transistors. Two noise sources contribute to output noise currents. One is the thermal noise generated in the bulk electrolyte region, and the other is the thermal noise from the double-layer region at the electrolyte-oxide interface. By employing two slightly-different equivalent circuits for two noise current sources, the power spectral density of output noise current is calculated. From the modeling and simulated results, the bulk electrolyte thermal noise dominates the double-layer thermal noise. Electrolyte thermal noise are computed for three different concentrations of NaCl electrolyte. The derived formulas give a good agreement with the published experimental data.

Keywords

References

  1. M. A. Alam, Principles of Electronic Nanobiosensors, www.nanohub.org, 2013.
  2. P. Bergveld, "Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years," Sens. Actuators B, vol. 88, pp. 1-20, 2002.
  3. X. P. A. Gao, G. Zheng, and C. M. Lieber, "Subthreshold regime has the optimal sensitivity for rnanowire FET biosensors," Nano Lett., vol. 10, pp. 547-552, 2010. https://doi.org/10.1021/nl9034219
  4. J. M. Rothberg et al., "An integrated semiconductor device enabling non-optical genome sequencing," Nature, vol. 475, pp. 348-352, 2011. https://doi.org/10.1038/nature10242
  5. A. Hassibi, R. Navid, R. W. Dutton, and T. H. Lee, "Comprehensive study of noise processes in electrode electrolyte interfaces," J. Appl. Phys., vol. 96, pp. 1074-1082, 2004. https://doi.org/10.1063/1.1755429
  6. D. Landheer, G. Aers, W. R. McKinnon, M. J. Deen, and J. C. Ranuarez, "Model for the field effect from layers of biological macromolecules on the gates of metal-oxide-semiconductor transistors," J. Appl. Phys., vol. 98, pp. 044701-1-15, 2005. https://doi.org/10.1063/1.2008354
  7. M. J. Deen, M. W. Shinwari, J. C. Ranuarez and D. Landheer, "Noise considerations in field-effect biosensors," J. Appl. Phys., vol. 100, pp. 074703-1-8, 2006. https://doi.org/10.1063/1.2355542
  8. A. Hassibi, H. Vikalo, and A. Hajimiri, "On noise processes and limits of performance in biosensors," J. Appl. Phys., vol. 102, pp. 014909-1-12, 2007. https://doi.org/10.1063/1.2748624
  9. G. Zheng, X. P. A. Gao, and C. M. Lieber, "Frequency domain detection of biomolecules using silicon nanowire biosensors," Nano Lett., vol. 10, pp. 3179-3183, 2010. https://doi.org/10.1021/nl1020975
  10. J. Go, P. R. Nair, and M. A. Alam, "Theory of signal and noise in double-gated nanoscale electronic pH sensors," J. Appl. Phys., vol. 112, pp. 034516-1-10, 2012. https://doi.org/10.1063/1.4737604
  11. K. Georgakopoulou, A. Birbas, and C. Spathis, "Modeling of fluctuation processes on the biochemically sensorial surface of silicon nanowire field-effect transistors," J. Appl. Phys., vol. 117, pp. 104505-1-8, 2015. https://doi.org/10.1063/1.4914352
  12. J. O'M. Bockris, A. K. N. Reddy, and M. Gamboa-Aldeco, Modern Electrochemistry: Fundamentals of Electrodics, vol. 2A, 2nd ed. 2000, Kluwer Academic.
  13. E. Gileadi, Electrode Kinetics for Chemists, Chemical Engineers, and Material Scientist, 1993, Wiley-VCH.
  14. A. J. Bard and L. J. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed. 2001, Wiley.
  15. M. Voelker and P. Fromherz, "Nyquist noise of cell adhesion detected in a neuron-silicon transistor," Phys. Rev. Lett., vol. 96, pp. 228102-1-4, 2006. https://doi.org/10.1103/PhysRevLett.96.228102