Acknowledgement
Supported by : DAAD, HAZU, TUM
References
- Blocken, B., Stathopoulos, T. and Carmeliet, J. (2007a), "CFD simulation of the atmospheric boundary layer: wall function problems", Atmos. Environ., 41(2), 238-252. https://doi.org/10.1016/j.atmosenv.2006.08.019
- Blocken, B., Carmeliet, J. and Stathopoulos, T. (2007b), "CFD evaluation of wind speed conditions in passages between parallel buildings - effect of wall-function roughness modifications for the atmospheric boundary layer flow", J. Wind Eng. Ind. Aerod., 95(9-11), 941-962. https://doi.org/10.1016/j.jweia.2007.01.013
- Boussinesq, J. (1877), "Essai sur la theorie des eaux courantes", Memoires presentes par divers savants al'Academie des Sciences XXIII, 1-680.
- Counihan, J. (1969a), "A method of simulating a neutral atmospheric boundary layer in a wind tunnel", AGARD Conference Proceedings 43.
- Counihan, J. (1969b), "An improved method of simulating an atmospheric boundary layer in a wind tunnel", Atmos. Environ., 3, 197-214. https://doi.org/10.1016/0004-6981(69)90008-0
- Counihan, J. (1973), "Simulation of an adiabatic urban boundary layer in a wind tunnel", Atmos. Environ., 7(7), 673-689. https://doi.org/10.1016/0004-6981(73)90150-9
- Duynkerke, P.G. (1988), "Application of the E-epsilon turbulence closure-model to the neutral and stable atmospheric Boundary Layer", J. Atmos. Sci., 45(5), 865-880. https://doi.org/10.1175/1520-0469(1988)045<0865:AOTTCM>2.0.CO;2
- ESDU 74031 (1974), "Characteristics of atmospheric turbulence near the ground. Part II: single point data for strong winds (neutral atmosphere)", Engineering Sciences Data Unit 74031.
- Franke, J., Hellsten, A., Schlunzen, H. and Carissimo, B.E. (2007), "Best practice guideline for the CFD simulation of flows in the urban environment", Cost action 732: quality assurance and improvement of microscale meteorological models.
- Garratt, J.R. (1992), The atmospheric boundary layer, Cambridge University Press, New York, NY, USA.
- Gorle, C., van Beeck, J., Rambaud, P. and Van Tendeloo, G. (2009), "CFD modelling of small particle dispersion: The influence of the turbulence kinetic energy in the atmospheric boundary layer", Atmos. Environ., 43(3), 673-68. https://doi.org/10.1016/j.atmosenv.2008.09.060
-
Hargreaves, D.M. and Wright, N.G. (2007), "On the use of the k-
${\varepsilon}$ model in commercial CFD software to model the neutral atmospheric boundary layer", J. Wind Eng. Ind. Aerod., 95(5), 355-369. https://doi.org/10.1016/j.jweia.2006.08.002 - Holmes, J.D. (2007), Wind loading of structures, 2nd Ed., Taylor & Francis, London, UK.
- Hu, P., Li, Y.L., Cai, C.S., Liao, H.L. and Xu, G.J. (2013), "Numerical simulation of the neutral equilibrium atmospheric boundary layer using the SST k-omega turbulence model", Wind Struct., 17(1), 87-105. https://doi.org/10.12989/was.2013.17.1.087
- Jasak, H. (1996), Error analysis and estimation in the finite volume method with application to fluid flows, Ph.D. Thesis, Imperial College, University of London, London, UK.
- Jasak, H., Weller, H. and Gosman, A. (1999), "High resolution NVD differencing scheme for arbitrarily unstructured meshes", Int. J. Numer. Meth. Fl., 31, 431-449. https://doi.org/10.1002/(SICI)1097-0363(19990930)31:2<431::AID-FLD884>3.0.CO;2-T
- Jones, W.P. and Launder B.E. (1972), "The prediction of laminarization with a two-equation model of turbulence", Int. J. Heat Mass Trans., 15(2), 301-314. https://doi.org/10.1016/0017-9310(72)90076-2
- Juretic, F. (2004), Error analysis in finite volume CFD, Ph.D. Thesis, Imperial College, University of London, London, UK.
-
Juretic, F. and Kozmar, H. (2013), "Computational modeling of the neutrally stratified atmospheric boundary layer flow using the standard k-
${\varepsilon}$ turbulence model", J. Wind Eng. Ind. Aerod., 115, 112-120. https://doi.org/10.1016/j.jweia.2013.01.011 - Kozmar, H. (2008), "Influence of spacing between buildings on wind characteristics above rural and suburban areas", Wind Struct., 11(5), 413-426. https://doi.org/10.12989/was.2008.11.5.413
- Kozmar, H. (2010), "Scale effects in wind tunnel modeling of an urban atmospheric boundary layer", Theor. Appl. Climatol., 100(1-2), 153-162. https://doi.org/10.1007/s00704-009-0156-3
- Kozmar, H. (2011a), "Truncated vortex generators for part-depth wind-tunnel simulations of the atmospheric boundary layer flow", J. Wind Eng. Ind. Aerod., 99(2-3), 130-136. https://doi.org/10.1016/j.jweia.2010.11.001
- Kozmar, H. (2011b) "Characteristics of natural wind simulations in the TUM boundary layer wind tunnel", Theor. Appl. Climatol., 106(1-2), 95-104. https://doi.org/10.1007/s00704-011-0417-9
- Kozmar, H. (2011c), "Wind-tunnel simulations of the suburban ABL and comparison with international standards", Wind Struct., 14(1), 15-34. https://doi.org/10.12989/was.2011.14.1.015
- Kozmar, H. (2012a), "Improved experimental simulation of wind characteristics around tall buildings", J. Aerospace Eng., 25(4), 670-679. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000167
- Kozmar, H. (2012b), "Physical modeling of complex airflows developing above rural terrains", Environ. Fluid Mech., 12(3), 209-225. https://doi.org/10.1007/s10652-011-9224-1
- O'Sullivan, J.P., Archer, R.A. and Flay, R.G.J. (2011), "Consistent boundary conditions for flows within the atmospheric boundary layer", J. Wind Eng. Ind. Aerod., 99(1), 65-77. https://doi.org/10.1016/j.jweia.2010.10.009
-
Parente, A., Gorle, C., van Beeck, J. and Benocci, C. (2011a), "Improved k-
${\varepsilon}$ model and wall function formulation for the RANS simulation of ABL flows", J. Wind Eng. Ind. Aerod., 99(4), 267-278. https://doi.org/10.1016/j.jweia.2010.12.017 - Parente, A., Gorle, C., van Beeck, J. and Benocci, C. (2011b), "A comprehensive modelling approach for the neutral atmospheric boundary layer: Consistent inflow conditions, wall function and turbulence model", Bound. - Lay. Meteorol., 140, 411-428. https://doi.org/10.1007/s10546-011-9621-5
- Patankar, S.V. and Spalding, D.B. (1972), "A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows", Int. J. Heat Mass Trans., 15(10), 1787-1806. https://doi.org/10.1016/0017-9310(72)90054-3
- Pope, S.B. (2000), Turbulent Flows, Cambridge University Press, Cambridge, UK.
- Revuz, J., Hargreaves, D.M. and Owen J.S. (2012), "On the domain size for the steady-state CFD modelling of a tall building", Wind Struct., 15(4), 313-329. https://doi.org/10.12989/was.2012.15.4.313
-
Richards, P.J. and Hoxey, R.P. (1993), "Appropriate boundary conditions for computational wind engineering models using the k-
${\varepsilon}$ turbulence model", J. Wind Eng. Ind. Aerod., 46-47, 145-153. https://doi.org/10.1016/0167-6105(93)90124-7 - Riddle, A., Carruthers, D., Sharpe, A., McHugh, C. and Stocker, J. (2004), "Comparisons between FLUENT and ADMS for atmospheric dispersion modeling", Atmos. Environ., 38(7), 1029-1038. https://doi.org/10.1016/j.atmosenv.2003.10.052
-
Shih, T.H., Liou, W.W., Shabbir, A., Yang, Z. and Zhu, J. (1995), "A new k-
${\epsilon}$ eddy viscosity model for high Reynolds number turbulent flows", Comput. Fluids, 24(3), 227-238. https://doi.org/10.1016/0045-7930(94)00032-T - Wilcox, D.C. (1988), "Reassessment of the scale-determining equation for advanced turbulence models", AIAA J., 26(11), 1299-1310. https://doi.org/10.2514/3.10041
- Yakhot, V. and Orszag, S.A. (1986), "Renormalization group analysis of turbulence, 1. Basic Theory", J. Sci. Comput., 1, 3-51. https://doi.org/10.1007/BF01061452
- Yang, Y., Gu, M., Chen, S. and Jin, X. (2009), "New inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer in computational wind engineering", J. Wind Eng. Ind. Aerod., 97(2), 88-95. https://doi.org/10.1016/j.jweia.2008.12.001
- Zhang, J., Yang, Q.S. and Li, Q.S. (2013), "Developments and applications of a modified wall function for boundary layer flow simulations", Wind Struct., 17(4), 361-377. https://doi.org/10.12989/was.2013.17.4.361
Cited by
- Steady RANS model of the homogeneous atmospheric boundary layer vol.173, 2018, https://doi.org/10.1016/j.jweia.2017.12.006
- Characteristics of Zonda wind in South American Andes vol.24, pp.6, 2014, https://doi.org/10.12989/was.2017.24.6.657
- Numerical and experimental study of the aerodynamic characteristics around two-dimensional terrain with different slope angles vol.13, pp.4, 2014, https://doi.org/10.1007/s11707-019-0790-8
- Optimal design of sand blown wind tunnel vol.61, pp.3, 2014, https://doi.org/10.1080/00051144.2020.1778237
- Modeling the parameters of hot radioactivity release as a result of an accident at Chernobyl nuclear power plant vol.1701, pp.None, 2014, https://doi.org/10.1088/1742-6596/1701/1/012005