• Title/Summary/Keyword: two dimensions

Search Result 2,011, Processing Time 0.031 seconds

Mobile phone as a fashion product: Comparing fashion behaviors in clothing and mobile phone (패션상품으로서의 모바일폰: 의상과 모바일폰에서의 패션행동 비교 연구)

  • Park, Kyungae
    • Korean Journal of Human Ecology
    • /
    • v.22 no.2
    • /
    • pp.329-342
    • /
    • 2013
  • As mobile phone has acquired a status of a fashion item expressing one's character, it is necessary to understand the fashion needs for this new fashion product. The purpose of this study was to apply the fashion orientation construct developed in the clothing research field to mobile phone and explore its validity. The multi-dimensional construct of fashion orientation which most widely represented the fashion aspects was examined for the two product categories of clothing and mobile phone. Data were collected from an online questionnaire survey, and a total of 1,136 responses were analyzed. The construct structure of fashion orientation of mobile phone resulted in individuality, innovation, and fashion was different from that of clothing extracted to interest/importance, fashion/innovation, and individuality. Fashion sensitivity and an early adoption of a new product were two different dimensions in mobile phone while not separable in clothing. Despite a higher predictability of the fashion/innovation orientation of clothing on fashion orientation rather than on innovation orientation of mobile phone, innovation orientation was more important to purchase behaviors of mobile phone. The study still implies that it is valid to use clothing fashion innovative consumers for mobile phone marketing.

Two-Step Rate Distortion Optimization Algorithm for High Efficiency Video Coding

  • Goswami, Kalyan;Lee, Dae Yeol;Kim, Jongho;Jeong, Seyoon;Kim, Hui Yong;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • v.4 no.4
    • /
    • pp.311-316
    • /
    • 2017
  • High Efficiency Video Coding (HEVC) is the newest video coding standard for improvement in video data compression. This new standard provides a significant improvement in picture quality, especially for high-resolution videos. A quadtree-based structure is created for the encoding and decoding processes and the rate-distortion (RD) cost is calculated for all possible dimensions of coding units in the quadtree. To get the best combination of the block an optimization process is performed in the encoder, called rate distortion optimization (RDO). In this work we are proposing a novel approach to enhance the overall RDO process of HEVC encoder. The proposed algorithm is performed in two steps. In the first step, like HEVC, it performs general rate distortion optimization. The second step is an extra checking where a SSIM based cost is evaluated. Moreover, a fast SSIM (FSSIM) calculation technique is also proposed in this paper.

Nanostructures in Thin Films of Block Copolymers

  • Russell Thomas P.;Hawker Craig J.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.80-80
    • /
    • 2006
  • As the size scale of features continue to shrink in devices, the use of self-assembly, i.e. a "bottom up" approach, for device fabrication becomes increasingly important. Yet, simple self-assembly alone will not be sufficient to meet the increasing demands place on the registry of structures, particularly nanostructured materials. Several criteria are key in the rapid advancement and technology transfer for self-assembling systems. Specifically, the assembly processes must be compatible with current $^{\circ}{\infty}top\;down^{\circ}{\pm}$ approaches, where standard photolithographic processes are used for device fabrication. Secondly, simple routes must be available to induce long-range order, in either two or three dimensions, in a rapid, robust and reliable manner. Thirdly, the in-plane orientation and, therefore, ordering of the structures, must be susceptible to a biasing by an external, macroscopic means in at least one, if not two directions, so that individual elements can be accessed in a reliable manner. Block copolymers, specifically block copolymers having a cylindrical microdomain morphology, are one such material that satisfy many, if not all, of the criteria that will be necessary for device fabrication. Here, we discuss several routes by which these versatile materials can be used to produce arrays of nanoscopic elements that have high aspect ratios (ideal for templating and scaffolding), that exhibit long-range order, that give access to multiple length scale structuring, and that are amenable to being biased by macroscopic features placed on a surface.

  • PDF

Scanning confocal microscope using a quad-detector (4분할 photodiode를 이용한 scanning confocal microscope)

  • 유석진;김수철;이진서;권남익
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.2
    • /
    • pp.165-168
    • /
    • 1997
  • We have constructed a scanning confocal microscope using a 780 nm semiconductor laser, an actuator of a compact disk player and a quad-detector. This device detects heights and characteristics of a surface. The laser focus was located at the surface of a sample by using the error signal obtained by a quad-dector, and the current supplied to the actuator for lens was displayed as a height. The materials of a surface were classified according to reflected total intensities and was displayed by different color in a monitor. The device has very samll dimensions of 30 mm$\times$20 mm$\times$20 mm and scan field is 1.6 mm$\times$1.6mm. We obtained two images, one using only reflected light and the other using an error signal from a quad-detector and compared these two images.

  • PDF

The Crystal Structure of Benzidine Dihydrochloride (Benzidine 鹽酸鹽의 結晶構造)

  • Koo, Chung-Hoe;Kim, Hoon-Sup;Shin, Hyun-So
    • Journal of the Korean Chemical Society
    • /
    • v.16 no.1
    • /
    • pp.18-24
    • /
    • 1972
  • Benzidine dihydrochloride crystallizes in the triclinic system. The space group is $P_1$. The unit cell dimensions are; a = 4.38${\pm}$0.01, b = 5.76${\pm}$0.01, c = 12.82${\pm}$0.02${\AA}$, $\alpha$ = 101.5${\pm}$0.2, $\beta$ = 99.5${\pm}$0.2, $\gamma$ = 99.5${\pm}$0.2$^{\circ}$; with one molecule per unit cell. The crystal structure has been solved by two dimensional Patterson and by trial and error methods, and refined by means of two dimensional differential synthesis. The bond distances are C-C(*) = 1.40${\pm}$0.02, C-C = 1.52${\pm}$0.02, C-N = 1.51${\pm}$0.03 and N-H${\cdot}{\cdot}{\cdot}$Cl = 3.21${\pm}$0.03${\AA}$. The structure consists of hydrogen bonded molecular layers, extending to the (100) plane, and the hydrogen bonding scheme is similar to that of p-phenylenediamine dihydrochloride. The adhesion between hydrogen bonded molecular layers is due to van der Waals forces.

  • PDF

Design and calibration of a wireless laser-based optical sensor for crack propagation monitoring

  • Man, S.H.;Chang, C.C.;Hassan, M.;Bermak, A.
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1543-1567
    • /
    • 2015
  • In this study, a wireless crack sensor is developed for monitoring cracks propagating in two dimensions. This sensor is developed by incorporating a laser-based optical navigation sensor board (ADNS-9500) into a smart wireless platform (Imote2). To measure crack propagation, the Imote2 sends a signal to the ADNS-9500 to collect a sequence of images reflected from the concrete surface. These acquired images can be processed in the ADNS-9500 directly (the navigation mode) or sent to Imote2 for processing (the frame capture mode). The computed crack displacement can then be transmitted wirelessly to a base station. The design and the construction of this sensor are reported herein followed by some calibration tests on one prototype sensor. Test results show that the sensor can provide sub-millimeter accuracy under sinusoidal and step movement. Also, the two modes of operation offer complementary performance as the navigation mode is more accurate in tracking large amplitude and fast crack movement while the frame capture mode is more accurate for small and slow crack movement. These results illustrate the feasibility of developing such a crack sensor as well as point out directions of further research before its actual implementation.

Ultra Grain Refinement and High Strengthening of Deoxidized Low-Phosphorous Copper by Accumulative Roll-Bonding Process (ARB법에 의한 인탈산동의 결정립초미세화 및 고강도화)

  • Lee, Seong-Hee;Han, Seung-Zeon;Lim, Cha-Yong
    • Korean Journal of Materials Research
    • /
    • v.16 no.9
    • /
    • pp.592-597
    • /
    • 2006
  • A deoxidized low-phosphorous (DLP) copper was processed by accumulative roll-bonding (ARB) for ultra grain refinement and high strengthening. Two copper sheets 1 mm thick, 30 mm wide and 300 mm long are first degreased and wire-brushed for sound bonding. The sheets are then stacked to each other, and roll-bonded by about 50% reduction rolling without lubrication at ambient temperature. The bonded sheet is then cut to the two pieces of same dimensions and the same procedure was repeated to the sheets up to eight cycles (${\varepsilon}{\sim}6.3$). TEM observation revealed that ultrafine grains were developed after the 4th cycle, and their size decreased at higher cycles. Tensile strength of the copper increased with the equivalent strain, and it reached 547 MPa which was 3 times higher than that of the initial material. It is concluded that the ARB process is an effective method for high strengthening of the DLP copper.

Comparison of Two Nondestructive Methods of Leaf Area Estimation

  • Woo, Hyo-Jin;Park, Yong-Mok
    • Journal of Ecology and Environment
    • /
    • v.32 no.1
    • /
    • pp.61-65
    • /
    • 2009
  • We compared two nondestructive methods for leaf area estimation using leaves of 16 common plant species classified into six types depending on leaf shape. Relatively good linear relationships between actual leaf area (LA) and leaf length (L), width (W), or the product of length and width (LW) were found for ordinary leaves with lanceolate, oblanceolate, linear and sagitttate shapes with entire margins, serrate margins, mixed margins with a entire form and shallow lobes, and ordinary incised margins. LA was better correlated with LW than L or W, with $R^2$ > 0.91. However, for deeply incised lobes, LA estimation using LW showed low correlation coefficient values, indicating low accuracy. On the other hand, a method using photographic paper showed a good correlation between estimates of area based on the mass of a cut-out leaf image on a photographic sheet (PW) and actual leaf area for all types of leaf shape. Thus, the PW method for LA estimation can be applied to all shapes of leaf with high accuracy. The PW method takes a little more time and has a higher cost than leaf estimation methods using LW based on leaf dimensions. These results indicate that researchers should choose their nondestructive LA estimation method according to their research goals.

Adaptive Triangular Finite Element Method for Compressible Navier - Stokes Flows (삼각형 적응격자 유한요소법을 이용한 압축성 Navier-Stokes 유동의 해석)

  • Im Y. H.;Chang K. S.
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.88-97
    • /
    • 1996
  • This paper treats an adaptive finite-element method for the viscous compressible flow governed by Navier-Stokes equations in two dimensions. The numerical algorithm is the two-step Taylor-Galerkin mettled using unstructured triangular grids. To increase accuracy and stability, combined moving node method and grid refinement method have been used for grid adaption. Validation of the present algorithm has been made by comparing the present computational results with the existing experimental data and other numerical solutions. Four benchmark problems are solved for demonstration of the present numerical approach. They include a subsonic flow over a flat plate, the Carter flat plate problem, a laminar shock-boundary layer interaction. and finally a laminar flow around NACA0012 airfoil at zero angle of attack and free stream Mach number of 0.85. The results indicates that the present adaptive triangular grid method is accurate and useful for laminar viscous flow calculations.

  • PDF

A Computer-Aided Design Program of Man-in-Cab for Heavy Construction Vehicle (인체모델을 이용한 중장비 운전실 설계용 CAD 프로그램)

  • Son, Kwon;Lee, Hee-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3525-3537
    • /
    • 1996
  • This paper presents a CAD program develpoed on a microcomputer in order to support graphic and computational assessment of ergonomic problems associated with the design of a man-in-cab system. The program is coded to help workspace designers with ergonomic evaluations needed in the design stage. This paper proposed a biomechanical -ergonomic evaluations needed using man and workplace models. The human model is developed to have dimensions obtained from the Korean anthropometric data reported in 1992. Its graphical representation is based on a wire-frame model but, whenever necessary, body segments can be represented by a solid model with hidden line/faces removed and shaded. Workplace models are presented for cabs of the excavator, one of the most popular construction vehicles. A workplace model consists of an operator seat, a steering wheel. two control levers, two pedals, and a control panel. The workplace elements can be modified in their sizes, positions, and orientations by changing the reference point and design parameters. An algorithm for the view test is suggested and loaded to provide a visual evaluaiton of the overall layout of a workplace model.