• Title/Summary/Keyword: turbidity coefficient

Search Result 38, Processing Time 0.029 seconds

Hydraulics and water quality characteristics of flushing in distribution pipes (배수관 플러싱의 수리적 현상과 배출수의 수질 특성)

  • Ahn, Jae-Chan;Lee, Su-Won;Baek, Kwang-In;Choi, Young-June;Choi, Jae-Ho;Jeong, Eui-Sun;Park, Hyeon;Koo, Ja-Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.1
    • /
    • pp.93-103
    • /
    • 2008
  • This study was conducted to optimize a unidirectional flushing program in distribution pipes by analysis of water pressure, velocity, quality, and other parameters during flushing. As a result, correlation coefficient between flushed pipe length and the flushing duration was obtained $R^2=0.83$ and the equation $Y_{Time}=0.0571{\cdot}X_{Pipe\;length}+4.7648$ for 10 pipes. The averaged flushing velocity in the pipes, 1.1 m/s, was enough to remove loose deposits on the inner wall of the pipes. 3 of 92 water samples taken during flushing met the National Drinking Water Quality Standard for Fe and Mn, but not for Al. Turbidity less than 1 NTU is suggested for the appropriate criteria to finish flushing in pipes. The coefficient of determination ($R^2$) between turbidity and TSS was 0.95 and the equation was induced as $Y_{TSS}=1.2068{\cdot}X_{Turbidity}$. The amount of removed deposits could be estimated from the turbidity data of discharged water in field because turbidity and TSS in the discharged water is highly correlated.

Temperature analysis of a long-span suspension bridge based on a time-varying solar radiation model

  • Xia, Qi;Liu, Senlin;Zhang, Jian
    • Smart Structures and Systems
    • /
    • v.25 no.1
    • /
    • pp.23-35
    • /
    • 2020
  • It is important to take into account the thermal behavior in assessing the structural condition of bridges. An effective method of studying the temperature effect of long-span bridges is numerical simulation based on the solar radiation models. This study aims to develop a time-varying solar radiation model which can consider the real-time weather changes, such as a cloud cover. A statistical analysis of the long-term monitoring data is first performed, especially on the temperature data between the south and north anchors of the bridge, to confirm that temperature difference can be used to describe real-time weather changes. Second, a defect in the traditional solar radiation model is detected in the temperature field simulation, whereby the value of the turbidity coefficient tu is subjective and cannot be used to describe the weather changes in real-time. Therefore, a new solar radiation model with modified turbidity coefficient γ is first established on the temperature difference between the south and north anchors. Third, the temperature data of several days are selected for model validation, with the results showing that the simulated temperature distribution is in good agreement with the measured temperature, while the calculated results by the traditional model had minor errors because the turbidity coefficient tu is uncertainty. In addition, the vertical and transverse temperature gradient of a typical cross-section and the temperature distribution of the tower are also studied.

Turbidimetric Measurement for On-line Monitoring of SiO2 Particles

  • Kim, In-Sook;Kim, Yang-Sun;Lim, H.B.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.801-805
    • /
    • 2004
  • In this work, the fundamental study of on-line monitoring of $SiO_2$ particles in the size range of 40 nm to 725 nm was carried out using turbidimetry. The size of particle was measured using a field emission scanning electron microscope (FE-SEM). The factors affecting on the turbidity were discussed, for example, wavelength, size, and concentration. In order to observe the dependence of turbidity on the wavelength, a turbidimetric system equipped with charged coupled detector (CCD) was built. The shape of the transmitted peak was changed and the peak maximum was shifted to the red when the concentration of particle was increased. This result indicates that the turbidity is related to the wavelength, which corresponds to the characteristic of the Mie extinction coefficient, Q, that is a function of not only particle diameter and refractive index but also wavelength. It is clear that a linear calibration curve for each particle in different size can be obtained at an optimized wavelength.

Seasonal Succession Characteristic of Phytoplankton Community in Lake Doam (도암호에서 식물플랑크톤 군집의 계절적 천이 특성)

  • Joung, Seung-Hyun;Park, Hae-Kyung
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.4
    • /
    • pp.673-680
    • /
    • 2010
  • Environmental factors and phytoplankton community in Lake Doam were monthly investigated at 3 stations from April 2009 to November 2009. During the study period, the concentrated rainfalls occurred at between July and August and then the TP and turbidity were sharply increased in in-lake. A total of 91 phytoplankton species was classified and these were consisted of 38 Bacillariophyceae, 35 Chlorophyceae, 10 Cyanophyceae, and 8 other species. Bacillariophyceae and Chlorophyceae were dominated during the seasonal succession of phytoplankton community, especially summer season. Bacillariophyceae was dominated from spring season to summer season and Chlorophyceae was dominated at summer season and autumn season. However, the dominance of Cyanophyceae generally developed at summer season in eutrophic water was not observed. From the analysis of correlation coefficient between environmental factors and phytoplankton cell number, we confirmed that there was a negative correlation between turbidity and cyanobacteria cell number (P<0.01). This result indicated that turbid water acts as the inhibitor of the cyanobacteria growth than other phytoplankton community.

Spatial and Temporal Dynamics of Turbid Water in Hypolimnetic Discharging Reservoir (심층 방류하는 안동호 내 탁수의 거동)

  • Park, Jae-Chung;Jung, Seok-Won;Park, Jung-Won;Kim, Ho-Joon
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.3
    • /
    • pp.360-366
    • /
    • 2008
  • The spatial and temporal variations of the high turbid water by a single event of heavy rain (total 299.1 mm and daily maximum 99.4 mm) were studied in Andong Reservoir, which has hypolimnetic discharges. Turbid water entered into the reservoir, was isolated from the bottom at the midreservoir and then passed through the metalimnion as an interflow current in the lacustrine zone. Maximum turbidity was 290 NTU at 16 m depth of the midreservoir, but the initial turbidity showed about 10 NTU in the reservoir before the rainfall. Turbid water in the reservoir affected to increase the withdrawal turbidity from the 3rd day after the rainfall, the maximum turbidity was 129 NTU at 5th day after the rainfall. Turbid water that flew towards the downreservoir distributed within 5 m above the outlet gate of the intake tower, showing the maximum turbidity, and that was decreased in its thickness and concentration by discharging through the intake tower. It has taken 38 days until the turbidity in the withdrawal reduced to 30 NTU, and 87 days to reduce the turbidity to the way when it was before the rainfall, with the correlation coefficient of 0.96 and 0.97, respectively. Turbid water was withdrawn from the reservoir by entraining into the intake tower as a form of the interflow, and not be settled down to the bottom of the reservoir. Therefore, we assessed that the depth of the withdrawal was appropriately positioned in Andong Reservoir, so as to withdraw the turbid water effectively from the reservoir.

The ecological study of phytoplankton in Kyeonggi Bay, Yellow Sea Il. Light intensity, Transparency, Suspended substances (西海 京畿 植物플랑크톤에 對한 생態學的 硏究 II. 光度, 透明度, 浮游物質)

  • 최중기;심재형
    • 한국해양학회지
    • /
    • v.21 no.2
    • /
    • pp.101-109
    • /
    • 1986
  • To clarify the light condition which influence phytoplankton ecology in Kyeonggi Bay, light intensity, compensation depth, extinction coefficient, transparency and suspended substances are studied from May 1981 to September 1982.Light intensities lie within adequate values for the phytoplankton growth from spring to autumn. However, in the winter season the light intensities show less than 4.8mw/$\textrm{cm}^2$ on the surface resulting lower than optimum irradiance. Light intensity could be a limiting factor for phytoplankton growth in winter. Compensation depths seasonally varied over an annual period in this study. Especially, in winter, compensation depths are confined to only 1-2m below the surface. Extinction coefficient(K) values are relatively high over an year cycle. K values is highest in winter and lowest in summer. Transparency shows seasonal variation. Tansparency is high in summer and low in winter. Thus low light intensity, low compensation depth, low transparency and high extinction coefficient in winter are due to the high turbidity and high concentrations of suspended substances. High concentrations of S.S. in winter result from the sediments and detritus resuspended by the winter turbulence induced by the strong winter winds and the convectional mixing. In summer, good light condition and low turbidity may result from the thermal stability of water mass preventing the resuspension of sediment particles.

  • PDF

Assessing the Action Plans in the Control Area(Soyang Reservoir) of Non-point Source Pollution (비점오염원 관리지역(소양호) 목표수질 달성도 평가)

  • Choi, Jaewan;Kang, Min-Ji;Ryu, Jichul;Kim, Dong-Il;Lim, Kyung-Jae;Shin, Dong-Seok
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.839-852
    • /
    • 2014
  • The Ministry of Environment (MOE) has made more effort in managing point source pollution rather than in nonpoint source pollution in order to improve water quality of the four major rivers. However, it would be difficult to meet water quality targets solely by managing the point source pollution. As a result of the comprehensive measures established in 2004 under the leadership of the Prime Minister's Office, a variety of policies such as the designation of control areas to manage nonpoint source pollution are now in place. Various action plans to manage nonpoint source pollution have been implemented in the Soyang-dam watershed as one of the control areas designed in 2007. However, there are no tools to comprehensively assess the effectiveness of the action plans. Therefore, this study would assess the action plans (especially, BMPs) designed to manage Soyang-dam watershed with the WinHSPF and the CE-QUAL-W2. To this end, we simulated the rainfall-runoff and the water quality (SS) of the watershed and the reservoir after conducting model calibration and the model validation. As the results of the calibration for the WinHSPF, the determination coefficient ($R^2$) for the flow (Q, $m^3/s$) was 0.87 and the $R^2$ for the SS was 0.78. As the results of the validation, the former was 0.78 and the latter was 0.67. The results seem to be acceptable. Similarly, the calibration results of the CE-QUAL-W2 showed that the RMSE for the water level was 1.08 and the RMSE for the SS was 1.11. The validation results(RMSE) of the water level was 1.86 and the SS was 1.86. Based on the daily simulation results, the water quality target (turbidity 50 NTU) was not exceeded for 2009~2011, as results of maximum turbidity in '09, '10, and '11 were 3.1, 2.5, 5.6 NTU, respectively. The maximum turbidity in the years with the maximum, the minimum, and the average of yearly precipitation (1982~2011) were 15.5, 7.8, and 9.0, respectively, and therefore the water quality target was satisfied. It was discharged high turbidity at Inbuk, Gaa, Naerin, Gwidun, Woogak, Jeongja watershed resulting of the maximum turbidity by sub-basins in 3years(2009~2011). The results indicated that the water quality target for the nonpoint source pollution management should be changed and management area should be adjusted and reduced.

Water Quality Assessment and Turbidity Prediction Using Multivariate Statistical Techniques: A Case Study of the Cheurfa Dam in Northwestern Algeria

  • ADDOUCHE, Amina;RIGHI, Ali;HAMRI, Mehdi Mohamed;BENGHAREZ, Zohra;ZIZI, Zahia
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.563-573
    • /
    • 2022
  • This work aimed to develop a new equation for turbidity (Turb) simulation and prediction using statistical methods based on principal component analysis (PCA) and multiple linear regression (MLR). For this purpose, water samples were collected monthly over a five year period from Cheurfa dam, an important reservoir in Northwestern Algeria, and analyzed for 12 parameters, including temperature (T°), pH, electrical conductivity (EC), turbidity (Turb), dissolved oxygen (DO), ammonium (NH4+), nitrate (NO3-), nitrite (NO2-), phosphate (PO43-), total suspended solids (TSS), biochemical oxygen demand (BOD5) and chemical oxygen demand (COD). The results revealed a strong mineralization of the water and low dissolved oxygen (DO) content during the summer period. High levels of TSS and Turb were recorded during rainy periods. In addition, water was charged with phosphate (PO43-) in the whole period of study. The PCA results revealed ten factors, three of which were significant (eigenvalues >1) and explained 75.5% of the total variance. The F1 and F2 factors explained 36.5% and 26.7% of the total variance, respectively and indicated anthropogenic pollution of domestic agricultural and industrial origin. The MLR turbidity simulation model exhibited a high coefficient of determination (R2 = 92.20%), indicating that 92.20% of the data variability can be explained by the model. TSS, DO, EC, NO3-, NO2-, and COD were the most significant contributing parameters (p values << 0.05) in turbidity prediction. The present study can help with decision-making on the management and monitoring of the water quality of the dam, which is the primary source of drinking water in this region.

Analysis of Correlation Relationship for Flow and Water Quality at Up and Down Streams (수계 상하류의 유량 및 수질 상관관계 분석)

  • Chang, In-Soo;Jung, Jin-Kyeng;Park, Ki-Bum
    • Journal of Environmental Science International
    • /
    • v.19 no.6
    • /
    • pp.771-778
    • /
    • 2010
  • The prediction of discharge is very important in water resources management and plan. In this study, we have analyzed discharge data of site at up and down stream in watershed. In order to forecast discharge the regression equations were developed by measuring flow data. Also, to forecast the change of water quality followed by change of inflow the correlation relationship between inflow of the Youngchun site and the Chunhju dam was shown as very high. The forecast of inflow at the Chungju dam would be possible through flow analysis of the Youngchun site. And, it is possible to forecast water quality by flow analysis because the correlation relationship of SS and turbidity followed by change of flow for each station of investigation was very high.

Stochastic Properties of Water Quality Variation in Downstream Part of Han River (한강 하류부의 수질변동에 대한 추계학적 특성(I) - 특히 뚝도 및 노량진 지점의 DO, 탁도, 수온의 변동을 중심으로 -)

  • 이홍근
    • Water for future
    • /
    • v.15 no.3
    • /
    • pp.23-36
    • /
    • 1982
  • The stochastic variations and structures of time series data on water quality were examined by employing the techniques of autocorrelation function, variance spectrum, Fourier series, autoregressive model and ARIMA model. These time series included hourly and daily observation on DO, turbidity, conductivity pH and water temperature. The measurement was made by automatic recording instrument at Noryangjin and Dook-do located in the downstream part of Han River during 1975 and 1976. Hourly water quality time series varied with the dominant 24-hour periodicity, and the 12-hour periodicity was also observed. An important factor affecting 24-hour periodic variation of DO is believed to be photosynthesis by algae. These phenomena might be attributable to periodic discharges of municipal sewage. Noryangjin site showed the more distinct 12-hour periodicity than Dook-do site did, and tidal effect might be responsible for the difference. The water quality, as measured by DO and turbidity, was better in the afternoon compared with the quality in the morning. This change can be explained by the periodic variation of DO, temperature and the amount of municipal wewage discharge. It was also observed that the water temperature at Noryangjin was higher than the temperature at Dook-do. This difference might have been caused by the pollutants that were added to the section between two sites. The correlation coefficients between some of the variables were fairly high. For example, the coefficient was -0.88 between DO and water temperature, 0.75 between turbidity and river flow, and 0.957 between water temperature and air temperature. The lag time of heat transfer from the air to the water was estimated as 24 days. The first order auto-regressive model was appropriate for explaning standardized hourly DO time series. The ARIMA model of (1, 0, 0) type provided relatively satisfactory results for daily DO time series after the removal of significant harmonic value.

  • PDF