• Title/Summary/Keyword: tunnel lining concrete

Search Result 274, Processing Time 0.192 seconds

Characterization of deterioration of concrete lining in tunnel structures (터널 콘크리트 라이닝 구조물의 성능저하 특성)

  • Kim, Dong-Gyou;Jung, Ho-Seop;Bae, Gyu-Jin;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.4
    • /
    • pp.387-394
    • /
    • 2009
  • The objective of this study is to evaluate the durability and deterioration of concrete lining in the seven conventional tunnels. These tunnels were constructed about 40~70 years ago, and closed about 10~40 years ago. The field investigation and various laboratory testings were performed for this study. It was observed from the visual, examinations that the concrete linings of 7 tunnels were severely deteriorated, such as, cracks, leakages, desquamation, and exploitations. The compressive strengths obtained from rebound hardness method and uniaxial compressive strength test on core specimens largely differed depending on the locations in the tunnel. The maximum compressive strength of concrete lining was greater about 2 times than the minimum compressive strength of concrete lining in the same tunnel. The results of micro-structural analysis showed that the substances deteriorating the concrete lining, such as ettringite and thaumasite, were detected in the concrete lining of tunnel.

A study on the structural behaviour of shotcrete and concrete lining by experimental and numerical analyses (숏크리트 및 콘크리트 라이닝의 역학적 거동에 관한 실험 및 수치해석적 연구)

  • 김재순;김영근
    • Tunnel and Underground Space
    • /
    • v.8 no.4
    • /
    • pp.307-320
    • /
    • 1998
  • Tunnel lining is the final support of a tunnel and reflects the results of the interaction between ground and support system. Recently it is very difficult to support and manage the tunnel because the cracks on tunnel lining cause many problems in supporting and managing tunnels. Therefore the analysis of the cracks is quite strongly required. In this study, mechanical behaviour of a tunnel lining was examined by model tests and by numerical analyses. Especially the model test was examined for double linings including shotcrete and concrete lining. The model tests were carried out under various conditions taking different loading shapes, horizontal stresses, thicknesses of linings and double lining, vault opening behind the concrete lining and rock-like medium surrounding the lining. Due to horizontal stress, compressive stress prevailed on the lining. Thus the bearing capacity of the lining increased. The existence of a vault opening behind the concrete lining reduced the bearing capacity by the similar amount of reduction of concrete lining thickness. Rock-like medium cast around the side wall of the lining restrained the deflection of the lining, and the bearing capacity for cracking and failure increased vary much. In numerical analyses a algorithm which can analysis the double lining by introduction of interface element was developed. And the results of the numerical analyses were compared with the results of the model tests.

  • PDF

Model test on concrete placement method of tunnel lining due to tunnel size (터널 단면크기에 따른 콘크리트 라이닝 타설 방법에 대한 실험적 연구)

  • Kim, Sang-Hwan;Shin, Beom-Seok;Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.3
    • /
    • pp.213-221
    • /
    • 2009
  • This paper presents the concrete placement method of tunnel lining to improve the concrete lining quality such as cavities, cracks of the concrete lining. In order to perform this study, the occurred cracks initially in the concrete lining are reviewed and analyzed. From the review, the improvement methods to minimize the defects of concrete lining are suggested. To confirm the efficiency of new concrete placement approaches and the scale of tunnel section, two types of the scaled model tests are carried out and analyzed in model scales of 1/20 and 1/7. The 1/20 scaled model tests are carried out using the existing experimental rigs. The 1/7 scaled model tests are carried out in new test rigs developed in this study. The concrete placement rates obtained from the experimental results are analyzed and compared with themselves. In the existing concrete placement method, 1/20 scale model test than 1/7 scale model test have increased concrete placement rates but It is clearly found that two kinds of experimental studies show the similar results in improvement methods and good agreement with new concrete placing approach.

A Study on the Design Loads of NATM Tunnel Concrete Lining (NATM 터널 콘크리트라이닝 설계하중에 관한 연구)

  • 천병식;신영완
    • Tunnel and Underground Space
    • /
    • v.11 no.2
    • /
    • pp.96-108
    • /
    • 2001
  • A concrete lining of NATM tunnel is the final product of a process that involves planning and evaluation of user needs, geotechnical investigations, analysis of ground-lining interaction, construction, and observations and modifications during construction. The designer must consider the lining in context of the many function, construction, and geotechnical requirements. Also, the loss of supporting capacity of shotcrete lining due to poor rock qualities and shotcrete erosion must be considered. The values, shapes, and estimating methods of rock load and water pressure are very different with every designers. Estimating methods of rock loads used in the design of NATM tunnel concrete lining are investigated. Structural analyses are done in various load combinations, and the member forces(moment, axial force and shear force) are compared. The adequate load combination of rock load and water pressure is proposed.

  • PDF

An Experimental Study on the Application of Fly Ash for Lining Concrete (라이닝콘크리트에서의 FA적용에 관한 실험적 연구)

  • 최세진;임정열;김완영;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.151-154
    • /
    • 1999
  • The lining concrete of water tunnel is a structure that is constructed to prevent from corroding of the rock around tunnel and reduce the deterioration of geology by flowing water, and to improve the durability of tunnel, which must not only economy, stability but also satisfy the engeneering properties of concrete. This is an experimental study to analyze th usability of fly in the tunnel lining concrete. For this purpose, after select the mix proportion of plain concrete and concrete using fly ash(the replacement of 15 and 30% by weight of cement) to satisfy slump, air content and compressive strength through the mix design, the test of slump, setting time, compressive strength, tensile strength, drying shrinkage and adiabatic temperature rise was performed. According to test results, it was found that FA 15 concrete was more effective than the others to reduce drying shrinkage as well satisfy other engineering properties.

  • PDF

Study on the Improvements and the Problems of Tunnel Lining in Korea. (기존 라이닝 공법의 문제점과 개선방향에 대한 고찰)

  • 임수빈
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.135-137
    • /
    • 2002
  • NATM has been generalized as a tunnelling method since the early of 1980's in Korea. But the concrete lining as the secondary supporting system based on the NATM concept has not been treated in tunnelling construction. The Purpose of this paper is to study the improvements and the problems of concrete lining in the rock tunnel

  • PDF

Stress Analysis of Tunnel Concrete Lining for Maintenance Monitoring (유지관리 계측에 의한 터널 콘크리트 라이닝의 응력 분석)

  • Woo, Jong-Tae;Lee, Song
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.341-348
    • /
    • 2002
  • The purpose of maintenance monitoring is to offer the objective and continuous data in order to be lasting security affirmation and best fitted maintenance of tunnel structure. Though recently the examples of maintenance monitoring which Is applied to tunnel are rapidly increasing, long-term measured monitoring actual results and rationally analysis method researches are wholly lacking. In this study, it is analyzed that the relationship of stress and reinforcement stress of concrete lining, i.e., last support materials of tunnel through regression analysis based on the monitoring result of the subway tunnel, which was accomplished the monitoring for long period, passing the weathering. Also, through the analysis of the stress and the safety of concrete lining, it is estimated that the frequency of maintenance monitoring and the in-situ application of the criteria value of management.

Model Test of Lining for Estimation of Tunnel Soundness (터널 건전도 평가를 위한 라이닝 모델실험)

  • Kim, Young Keun
    • Magazine of korean Tunnelling and Underground Space Association
    • /
    • v.1 no.2
    • /
    • pp.59-71
    • /
    • 1999
  • Recently, many deformations in tunnel such as crack and leakage were occulted. Specially, the defects of tunnel lining have been a serious problem in safety and stability many repair works for maintenance in tunnel have been carried out. Therefore, it is necessary to estimate the structural cracking for countermeasure in deformed tunnel and to investigate on the characteristics of lining system and the soundness of tunnel. In this study model tests for tunnel lining were carried out using test apparatus and centrifuge, In the direct loading test, the prototype was Kyungbu high-speed railway tunnel and the scale is 1/10, and lining models were made of concrete. Test conditions included load conditions such as direction, shape and type, lining conditions such as single and double lining, thickness, and reinforcement. In centrifuge model test, the prototype was Seoul subway tunnel and the scale is 1/100, and lining models were made of aluminum and hydrostone. Test conditions included tunnel defects such as thickness shortage. behind cavity and longitudinal cracks, reinforcement methods such as epoxy, grouting and carbon sheet. From these model tests , the characteristics of deformation and failure for tunnel lining were estimated, and the structural behaviors of deformed lining and the effects of repair and reinforcement for tunnel lining were researched.

  • PDF

Fracture behaviors of tunnel lining caused by multi-factors: A case study

  • Zhao, Yiding;Zhang, Yongxing;Yang, Junsheng
    • Advances in concrete construction
    • /
    • v.8 no.4
    • /
    • pp.269-276
    • /
    • 2019
  • The cracking and spalling caused by fracture of concrete lining have adverse impacts on serviceability and durability of the tunnel, and the subsequent maintenance work for damaged structure needs to be specific to the damaging causes. In this paper, a particular case study of an operational tunnel structure is presented for the serious cracking and spalling behaviours of concrete lining, focusing on the multi-factors inducing lining failure. An integrated field investigation is implemented to characterize the spatial distribution of damages and detailed site situations. According to results of nondestructive inspection, insufficient lining thickness and cavity behind lining are the coupled-inducement of lining failure bahaviors. To further understanding of the lining structure performance influenced by these multiple construction deficiencies, a reliable numerical simulation based on extended finite element method (XFEM) is performed by using the finite element software. The numerical model with 112 m longitudinal calculation, 100 m vertical calculation and 43 m vertical depth, and the concrete lining with 1450 solid elements are set enrichment shape function for the aim of simulating cracking behavior. The numerical simulation responses are essentially in accordance with the actual lining damaging forms, especially including a complete evolutionary process of lining spalling. This work demonstrates that the serious lining damaging behaviors are directly caused by a combination of insufficient thickness lining and cavity around the surrounding rocks. Ultimately, specific maintenance work is design based on the construction deficiencies, and that is confirmed as an efficient, time-saving and safe maintenance method in the operational railway tunnel.