• Title/Summary/Keyword: tunnel geology

Search Result 201, Processing Time 0.027 seconds

Discontinuous Fracture Characteristics and Fractal Dimensions of Groundwater Flow Section in Youngchun Waterway Tunnel (영천댐 도수로터널내 지하수 유출구간의 불연속성 단열 특성 및 단열 프랙탈 차원)

  • 이병대;추창오;이인호;정교철;함세영;조병욱
    • The Journal of Engineering Geology
    • /
    • v.12 no.3
    • /
    • pp.333-344
    • /
    • 2002
  • To clarify the relationship between groundwater flow tate and statistical distribution of fractures in Youngchun waterway tunnel, the fracture characteristics and fractal dimensions of groundwater flow section were evaluated. The flow rate of 84,465m$^3$/day was identified in fault, accounting for about 70 percent of the total How rate. The flow rate of 36,525m$^3$/day was identified in joint, accounting for about 30 percent of the total flow rate. The flow late in the NATM section of sedimentary rocks increased with the fractal dimensions. The fractal dimensions determined in fault or fracture zones show more positive relation with the flow rate than those in joint developed zones.

Estimation of Total Displacements by RMR Grades using 3-Dimensional Numerical Analysis (3D 수치해석을 이용한 퇴적암 터널의 암반 등급별 전변위 산정)

  • Yim, Sung-Bin;Yun, Hyun-Seok;Seo, Yong-Seok;Park, Si-Hyun
    • The Journal of Engineering Geology
    • /
    • v.17 no.2 s.52
    • /
    • pp.217-224
    • /
    • 2007
  • Tunnel displacement happens during the process of stress redistribution by tunnelling. Tunnel displacement can be divided into 3 types such as displacements occurring before excavation, non-measured displacements after excavation and measured displacements after excavation. Because measurements of displacements occurring before excavation and non-measured displacement after excavation are difficult and time-consuming in the field, many researchers have studied on total displacement and its characteristics with excavation using numerical analysis. In this study, we used a 3-D back analysis to estimate total displacement by rock mass grades in tunnel constructed in sedimentary rock. We reduced error between measured displacements and calculated displacements from a 3-D numerical analysis, and then estimated suitable rock mass properties by RMR classes. Ultimately, Logistic nonlinear regressions of total displacement with tunnelling were estimated by least square estimation.

Petro-mineralogical and Mechanical Property of Fault Material in Phyllitic Rock Tunnel (천매암 터널 단층물질의 암석.광물학적 및 역학적 특성)

  • Lee, Kyoung-Mi;Lee, Sung-Ho;Seo, Yong-Seok;Kim, Chang-Yong;Kim, Kwang-Yoem
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.339-350
    • /
    • 2007
  • Content, swelling, concentration, drainage of clay are critical factors that could control rock failures as well as discontinuous geological structures like faults and joints. Especially, the proportional components of clay minerals can be one of few direct indicators to a rock failure caused well by rainfall. Criticality of the role of clay mineral contents gets bigger in the slope and tunnel design. This study, using a horizontal boring core of pelitic/psammitic phyllite from the OO tunnel construction site, aims to investigate mineral composition changes related to fault distribution and their mechanical effects to the activity of these discontinuous layers (i.e., clay-filled fault layers), and eventually to define correlation among rock compositions, weathering products and rock instabilities. Field survey and lab tests were carried out for the composition and strength index of fault clay minerals within the core samples and microscopic analysis of fresh and weathered rock samples.

Study on Statistical Method for Objective Evaluation of Tunnel Portal Slopes (객관적인 터널 갱구사면 평가를 위한 통계기법 연구)

  • Kwon, O-Il;Baek, Yong;Na, Jong-Hwa;Seo, Yong-Seok;Kim, Gyo-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.634-643
    • /
    • 2006
  • This study was intended to develop a high reliable technique by statistically processing on-site data with a general linear model, providing the basic data for construction, analysis of stability and establishment of maintenance measures for tunnel portal slopes in the future. This study evaluated the stability of a tunnel portal slope using a quantified technique, which is based on a general linear model. The important scores of each independent variable were allocated by using the ranges of the quantified values, based on the predicted coefficient of regression and the scores for categories of each independent variable were allocated so that those are equally spaced. The quantification model obtained from the results of evaluating the total data used for the quantification process provided precise results. In addition, it is expected that a more detail subdivision of response variables and sufficient data would produce a better stability evaluation standard.

  • PDF

A Study on Dynamic Analyses of Cut and Cover Tunnel during Earthquakes (개착터널에 대한 지진 시 동적수치해석에 관한 연구)

  • Park, Sung-Sik;Moon, Hong-Duk;Park, Si-Hyun
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.237-250
    • /
    • 2015
  • Underground structures such as a tunnel have been considered as safer than structures on the ground during earthquake. However, severe damages of underground structures occurred at subway tunnel during 1995 Kobe Earthquake and such damages are gradually increased. In this study, a dynamic behavior of a cut and cover tunnel surrounded by weathered soils is investigated using Mohr-Coulomb Model. Parametric study was carried out for boundary conditions, tensile strength, and earthquake magnitudes. The results of numerical analyses in terms of ground deformations and stresses acting on the lining were quite dependent on the side boundary condition (free or fix conditions) and tensile strength of surrounding soils. The ground was deformed upward at the end of earthquake when the side boundary condition was fixed, whereas residual deformations were not predicted when it was free. When the tensile strength of a soil was set to the same as its cohesion, residual deformation was less than 1cm, regardless of side boundary conditions or input accelerations. In addition to that, stress conditions at the maximum deformation and end of earthquake were within an allowable range and considered as safe. Proper boundary conditions and material properties such as tensile strength are quite important because they may significantly impact on the results of dynamic analyses.

Comparative Analysis of Fault Prediction with Horizontal and Longitudinal Displacements on Tunnel (터널 굴진면 수평변위와 천단변위를 이용한 단층대 예측방법의 비교·분석)

  • Yun, Hyun-Seok;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.403-411
    • /
    • 2016
  • A three-dimensional finite element analysis was conducted to analyze the predictable distances of a fault zone by using longitudinal displacement on tunnel face, trend line, L/C ratio, and C/C0 ratio at tunnel crown. The analysis used 28 numerical models with various fault attitudes. As a result, those faults that have drives with dip could be predicted earliest in L/C and C/C0 ratio analysis. And those faults that have drives against dip could be predicted earliest in L/C ratio and longitudinal displacement analysis. In addition, the fault zone ahead of tunnel was predicted in most models by using longitudinal displacement, trend line, L/C ratio, and C/C0 ratio. However, the longitudinal displacement among these methods may be most usefully predict a fault zone since it is displacements can be measured immediately after tunnel excavation.

Relation of Groundwater Flow Rate and Fracture System Associated with Waterway Tunnel Excavation (도수로터널 굴착에 따른 지하수 유출량과 단열의 관련성)

  • 이병대;조병욱;성익환;함세영;이춘오
    • The Journal of Engineering Geology
    • /
    • v.11 no.3
    • /
    • pp.327-337
    • /
    • 2001
  • To verify the characteristics of groundwater inflow accompanied by the tunnel excavation, the flow rate was measured before and after primary grouting. The relationship between the flow rate and fracture system was also analyzed. The initial flow rate was estimated as 120,990 m$^3$/day through six zones, which were characterized by a large amount of inflow before the primary grouting. After the primary grouting, although considerable amount of inflow was still recognized at the six zones, the flow rate was greatly reduced as 42,844 m$^3$/day. However, great recovery of water levels was not observed. Groundwater flow into the tunnel by excavation of the tunnel is mainly controlled by the fracture system that include faults and joints developed in the host rocks. Four sets of discontinuities affecting on the network of grondwater inflow in the study area were identified as follows: N60-85$^{\circ}C$ W.25$^{\circ}$SW/80$^{\circ}$SW(TSet 1), N40-50$^{\circ}$E.85$^{\circ}$SE/85$^{\circ}$NE(TSet 2), N10-20$^{\circ}$E.85$^{\circ}$SE(TSet 3), and N70-80$^{\circ}$E.80SE(TSet 4).

  • PDF

Effects of parallel undercrossing shield tunnels on river embankment: Field monitoring and numerical analysis

  • Li'ang Chen;Lingwei Lu;Zhiyang Tang;Shixuan Yi;Qingkai Wang;Zhibo Chen
    • Geomechanics and Engineering
    • /
    • v.35 no.1
    • /
    • pp.29-39
    • /
    • 2023
  • As the intensity of urban underground space development increases, more and more tunnels are planned and constructed, and sometimes it is inevitable to encounter situations where tunnels have to underpass the river embankments. Most previous studies involved tunnels passing river embankments perpendicularly or with large intersection angle. In this study, a project case where two EPB shield tunnels with 8.82 m diameter run parallelly underneath a river embankment was reported. The parallel length is 380 m and tunnel were mainly buried in the moderate / slightly weathered clastic rock layer. The field monitoring result was presented and discussed. Three-dimensional back-analysis were then carried out to gain a better understanding the interaction mechanisms between shield tunnel and embankment and further to predict the ultimate settlement of embankment due to twin-tunnel excavation. Parametrical studies considering effect of tunnel face pressure, tail grouting pressure and volume loss were also conducted. The measured embankment settlement after the single tunnel excavation was 4.53 mm ~ 7.43 mm. Neither new crack on the pavement or cavity under the roadbed was observed. It is found that the more degree of weathering of the rock around the tunnel, the greater the embankment settlement and wider the settlement trough. Besides, the latter tunnel excavation might cause larger deformation than the former tunnel excavation if the mobilized plastic zone overlapped. With given geometry and stratigraphic condition in this study, the safety or serviceability of the river embankment would hardly be affected since the ultimate settlement of the embankment after the twin-tunnel excavation is within the allowable limit. Reasonable tunnel face pressure and tail grouting pressure can to some extent suppress the settlement of the embankment. The recommended tunnel face pressure and tail grouting pressure are 300 kPa and 550 kPa in this study, respectively. However, the volume loss plays the crucial role in the tunnel-embankment interaction. Controlling and compensating the tunneling induced volume loss is the most effective measure for river embankment protection. Additionally, reinforcing the embankment with cement mixing pile in advance is an alternative option in case the predicted settlement exceeds allowable limit.

Relationship between Hydrogeological Characteristics and Subsurface Geology in Central Busan Megacity (부산광역시 도심부 수리지질 특성과 지하지질 발달상태의 관련성)

  • Ryu, Sang-Hun;Hamm, Se-Yeong;Cha, Yong-Hoon;Jang, Seong;Jeong, Jae-Hyeong;Son, Moon;Kim, Ki-Seok
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.367-379
    • /
    • 2007
  • This study intended to evaluate hydrogeological characteristics in relation to subsurface geology data obtained from borehole, groundwater level, borehole flowmeter test, and field hydraulic tests. The regression equation of groundwater level (Y) versus ground elevation (X) is expressed by Y=0.75X-7.00 with quite high correlation coefficient of 0.78. Relationship between groundwater level and thickness of landfill, alluvium, and weathered zone results in higher correlation of groundwater level (Y) versus natural log value of weathered tone (A) than other correlations, with the regression equation Y= exp(9.974A)-14.155. The result of groundwater flow measurement in the boreholes indicates that groundwater flows towards between south and southwest, and this approximately agree with regional distribution of groundwater levels.

Stability Analysis on the Crushing Facility Space in Mine Tunnel (갱내 파쇄시설 구축을 위한 갱도 안정성평가)

  • Kim, Jong-Gwan;Yang, Hyung-Sik;Kim, Won-Beom;Jang, Myoung-Hwan;Ha, Tae-Wook
    • Tunnel and Underground Space
    • /
    • v.20 no.3
    • /
    • pp.145-152
    • /
    • 2010
  • In this study, a survey of structural geology and discontinuities were carried out on the space in a limestone mine where the construction of crushing facilities is in planning. The stability of the site was analyzed by rock mass classifications and numerical analysis. Through these analyses, it could be known that removal of pillars could make the stability problems in the mine and the supports for pillars must be considered.