• 제목/요약/키워드: tumor growth inhibition

검색결과 523건 처리시간 0.029초

Saprolegnia parasitica Isolated from Rainbow Trout in Korea: Characterization, Anti-Saprolegnia Activity and Host Pathogen Interaction in Zebrafish Disease Model

  • Shin, Sangyeop;Kulatunga, D.C.M.;Dananjaya, S.H.S.;Nikapitiya, Chamilani;Lee, Jehee;De Zoysa, Mahanama
    • Mycobiology
    • /
    • 제45권4호
    • /
    • pp.297-311
    • /
    • 2017
  • Saprolegniasis is one of the most devastating oomycete diseases in freshwater fish which is caused by species in the genus Saprolegnia including Saprolegnia parasitica. In this study, we isolated the strain of S. parasitica from diseased rainbow trout in Korea. Morphological and molecular based identification confirmed that isolated oomycete belongs to the member of S. parasitica, supported by its typical features including cotton-like mycelium, zoospores and phylogenetic analysis with internal transcribed spacer region. Pathogenicity of isolated S. parasitica was developed in embryo, juvenile, and adult zebrafish as a disease model. Host-pathogen interaction in adult zebrafish was investigated at transcriptional level. Upon infection with S. parasitica, pathogen/antigen recognition and signaling (TLR2, TLR4b, TLR5b, NOD1, and major histocompatibility complex class I), pro/anti-inflammatory cytokines (interleukin $[IL]-1{\beta}$, tumor necrosis factor ${\alpha}$, IL-6, IL-8, interferon ${\gamma}$, IL-12, and IL-10), matrix metalloproteinase (MMP9 and MMP13), cell surface molecules ($CD8^+$ and $CD4^+$) and antioxidant enzymes (superoxide dismutase, catalase) related genes were differentially modulated at 3- and 12-hr post infection. As an anti-Saprolegnia agent, plant based lawsone was applied to investigate on the susceptibility of S. parasitica showing the minimum inhibitory concentration and percentage inhibition of radial growth as $200{\mu}g/mL$ and 31.8%, respectively. Moreover, natural lawsone changed the membrane permeability of S. parasitica mycelium and caused irreversible damage and disintegration to the cellular membranes of S. parasitica. Transcriptional responses of the genes of S. parasitica mycelium exposed to lawsone were altered, indicating that lawsone could be a potential anti-S. parasitica agent for controlling S. parasitica infection.

경신해지환(輕身解脂丸) (GGT1)이 형질전환 비만모델 hGHTg 수컷 쥐의 비만관련 유전자 발현에 미치는 영향 (Effects of GyeongshinhaeGihwan 1(GGT1) on the Expression of Obesity-related Genes in Obese Male hGHTg Rats)

  • 정양삼;윤미정;김경철;신순식
    • 동의생리병리학회지
    • /
    • 제20권1호
    • /
    • pp.93-97
    • /
    • 2006
  • To investigate whether GyeongshinhaeGihwan 1(GGT1), an anti-obesity herbal medicine widely used in oriental medicine, regulates the expression of obesity-related genes, we measured the changes in mRNA levels of these genes by GGT1 in human growth hormone transgenic (hGHTg) obese male rats, and these effects by GGT1 were compared with those of reductil (RD), an anti-obesity drug approved by FDA. Rats received once daily oral administrations of autoclaved water, RD, or GGT1 for 8 weeks. At the end of study, rats were sacrificed and tissues were harvested. Total RNA from adipose tissue, liver and kidney was prepared and the mRNA levels for LPL (lipoprotein lipase), PPAR $\gamma$ (peroxisome proliferator activated receptor-gamma), PPAR$\delta$ (peroxisome proliferator activated receptor-delta), leptin, TNF$\alpha$ (tumor necrosis factor-alpha), and internal standard G3PDH (glyceraldehyde-3- phosphate dehydrogenase) were analyzed by RT-PCR. PPAR$\gamma$ mRNA levels of liver and kidney were decreased in drug-treated groups compared with control group and the decrease of PPAR$\gamma$ expression was more prominent in GGT1 group than in RD group, suggesting that GGT1 is effective in the inhibition of adipogenesis and lipid storage by decreasing the PPAR$\gamma$ expression. In contrast, PPAR$\delta$ mRNA levels of adipose tissue and kidney were increased by RD and GGT1 , and the magnitudes of increase were higher in GGT1 group than in RD group, indicating that GGT1 stimulates fatty acid oxidation and energy metabolism by activating PPAR$\delta$ expression, Compared with control and RD groups, GGT1 group had higher concentrations of serum leptin, a well-known inhibitor of appetite. However, The mRNA levels of leptin, LPL, and TNF$\alpha$ were not changed by GGT1 and RD, compared with DW. These results demonstrate that GGT1 not only decreases PPAR$\gamma$ expression of liver and kidney, but also increases PPAR$\delta$ expression of adipose tissue and kidney, leading to the regulation of obesity and that these effects were more pronounced in GGT1 group compared with RD group. In addition, GGT1 seems to prevent obesity by increasing the serum leptin levels.

대하(帶下) 처방 3종의 항염, 항소양, 항균 효능에 관한 실험 연구 : 은화사간탕(銀花瀉肝湯), 소복축어탕(少腹逐瘀湯), 완대탕(完帶湯) (An Experimental Study on the Anti-inflammatory, Anti-pruritic and Anti-microbial Effects of the Three Herbal Prescription: Eunhwasagan-tang (EST), Sobokchukeo-tang (SCT), Wandae-tang (WDT))

  • 이은규;박찬욱;김수현;최유진;박경미;양승정;조성희
    • 대한한방부인과학회지
    • /
    • 제32권3호
    • /
    • pp.32-56
    • /
    • 2019
  • Objectives: The purpose of this study was to investigate the in vitro anti-inflammatory, anti-pruritic and antimicrobial effects of the three herbal prescription (EST, SCT, WDT), which has been traditionally used for treating leukorrhea induced by various infections in the female genital tract. Methods: In this experiment, the anti-inflammatory effects were evaluated by Nitric oxide (NO), $Interlukine-1{\beta}$ ($IL-1{\beta}$), Interlukine-2 (IL-2), Interlukine-6 (IL-6), Tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), Prostaglandin $E_2$ ($PGE_2$), Leukotriene $B_4$ ($LTB_4$) production amount and Inducible nitric oxide synthase (iNOS), Nuclear factor kappa B ($NF-{\kappa}B$), Cyclooxygenase-2 (COX-2) gene expression levels in RAW264.7 cells. And the anti-pruritic effects were evaluated by Histamine, Acetylcholine (ACh), Acetylcholinesterase (AChE), Substance P production amount in Mast cell/9 (MC/9) and Pheochromocytoma 12 (PC12) cells. The anti-microbial effect was measured by inhibition zone diameter on Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans and Aspergillus niger. Results: As a result of measuring anti-inflammatory efficacy, $IL-1{\beta}$, IL-2, IL-6, $TNF-{\alpha}$, $PGE_2$, and $LTB_4$ production amounts were significantly reduced in the EST, SCT, WDT extraction groups compared with the control group, and significantly decreased the amount of $NF-{\kappa}B$, iNOS, and COX-2 gene expression and the amount of Phospho-Inhibitor kappa B alpha ($p-I{\kappa}B-{\alpha}$)/Inhibitor kappa B alpha ($I{\kappa}B-{\alpha}$) and $NF-{\kappa}B$ p65 protein expression. In addition, As a result of measuring the anti-pruritic effect, the amounts of histamine, ACh and Substance P were significantly decreased, and AChE production was slightly decreased, but it's significance did not appear. Finally the anti-microbial effects of EST, SCT, WDT extraction groups against Pseudomonas aeruginosa, Candida albicans and Aspergillus niger was inhibited, however the growth of Escherichia coli and Staphylococcus aureus was not inhibited. Conclusions: These data suggest that EST, SCT, WDT can be used to treat patients with leukorrhea.

Ginsenoside Rg3 in combination with artesunate overcomes sorafenib resistance in hepatoma cell and mouse models

  • Chen, Ying-Jie;Wu, Jia-Ying;Deng, Yu-Yi;Wu, Ying;Wang, Xiao-Qi;Li, Amy Sze-man;Wong, Lut Yi;Fu, Xiu-Qiong;Yu, Zhi-Ling;Liang, Chun
    • Journal of Ginseng Research
    • /
    • 제46권3호
    • /
    • pp.418-425
    • /
    • 2022
  • Background: Sorafenib is effective in treating hepatoma, but most patients develop resistance to it. STAT3 signaling has been implicated in sorafenib resistance. Artesunate (ART) and 20(R)-ginsenoside Rg3 (Rg3) have anti-hepatoma effects and can inhibit STAT3 signaling in cancer cells. This study aimed to evaluate the effects of Rg3 in combination with ART (Rg3-plus-ART) in overcoming sorafenib resistance, and to examine the involvement of STAT3 signaling in these effects. Methods: Sorafenib-resistant HepG2 cells (HepG2-SR) were used to evaluate the in vitro anti-hepatoma effects of Rg3-plus-ART. A HepG2-SR hepatoma-bearing BALB/c-nu/nu mouse model was used to assess the in vivo anti-hepatoma effects of Rg3-plus-ART. CCK-8 assays and Annexin V-FITC/PI double staining were used to examine cell proliferation and apoptosis, respectively. Immunoblotting was employed to examine protein levels. ROS generation was examined by measuring DCF-DA fluorescence. Results: Rg3-plus-ART synergistically reduced viability of, and evoked apoptosis in HepG2-SR cells, and suppressed HepG2-SR tumor growth in mice. Mechanistic studies revealed that Rg3-plus-ART inhibited activation/phosphorylation of Src and STAT3 in HepG2-SR cultures and tumors. The combination also decreased the STAT3 nuclear level and induced ROS production in HepG2-SR cultures. Furthermore, overactivation of STAT3 or removal of ROS diminished the anti-proliferative effects of Rg3-plus-ART, and removal of ROS diminished Rg3-plus-ART's inhibitory effects on STAT3 activation in HepG2-SR cells. Conclusions: Rg3-plus-ART overcomes sorafenib resistance in experimental models, and inhibition of Src/STAT3 signaling and modulation of ROS/STAT3 signaling contribute to the underlying mechanisms. This study provides a pharmacological basis for developing Rg3-plus-ART into a novel modality for treating sorafenib-resistant hepatoma.

Growth Inhibitory and Pro-Apoptotic Effects of Hirsuteine in Chronic Myeloid Leukemia Cells through Targeting Sphingosine Kinase 1

  • Gao, Shan;Guo, Tingting;Luo, Shuyu;Zhang, Yan;Ren, Zehao;Lang, Xiaona;Hu, Gaoyong;Zuo, Duo;Jia, Wenqing;Kong, Dexin;Yu, Haiyang;Qiu, Yuling
    • Biomolecules & Therapeutics
    • /
    • 제30권6호
    • /
    • pp.553-561
    • /
    • 2022
  • Chronic myeloid leukemia (CML) is a slowly progressing hematopoietic cell disorder. Sphingosine kinase 1 (SPHK1) plays established roles in tumor initiation, progression, and chemotherapy resistance in a wide range of cancers, including leukemia. However, small-molecule inhibitors targeting SPHK1 in CML still need to be developed. This study revealed the role of SPHK1 in CML and investigated the potential anti-leukemic activity of hirsuteine (HST), an indole alkaloid obtained from the oriental plant Uncaria rhynchophylla, in CML cells. These results suggest that SPHK1 is highly expressed in CML cells and that overexpression of SPHK1 represents poor clinical outcomes in CML patients. HST exposure led to G2/M phase arrest, cellular apoptosis, and downregulation of Cyclin B1 and CDC2 and cleavage of Caspase 3 and PARP in CML cells. HST shifted sphingolipid rheostat from sphingosine 1-phosphate (S1P) towards the ceramide coupled with a marked inhibition of SPHK1. Mechanistically, HST significantly blocked SPHK1/S1P/S1PR1 and BCR-ABL/PI3K/Akt pathways. In addition, HST can be docked with residues of SPHK1 and shifts the SPHK1 melting curve, indicating the potential protein-ligand interactions between SPHK1 and HST in both CML cells. SPHK1 overexpression impaired apoptosis and proliferation of CML cells induced by HST alone. These results suggest that HST, which may serve as a novel and specific SPHK1 inhibitor, exerts anti-leukemic activity by inhibiting the SPHK1/S1P/S1PR1 and BCR-ABL/PI3K/Akt pathways in CML cells, thus conferring HST as a promising anti-leukemic drug for CML therapy in the future.

LPS 유도된 HCT116 인간 대장암세포에서 cordycepin의 prostaglandin E2-EP4 receptor 감소 조절을 통한 세포의 이동과 전이 억제 효과 (Cordycepin Inhibits LPS-induced Cell Migration and Invasion in Human Colorectal Carcinoma HCT116 cells through Down-regulation of Prostaglandin E2-EP4 Receptor)

  • 김정은;김보람;성수희;김진호;이하늘;서찬;정지민;임수아;최경민;정진우
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2023년도 임시총회 및 춘계학술대회
    • /
    • pp.50-50
    • /
    • 2023
  • Prostaglandin E2(PGE2), a major product of cyclooxygenase-2 (COX-2), plays an important role in the carcinogenesis of many solid tumors, including colorectal cancer. Because PGE2 functions by signaling through PGE2 receptors (Eps), which regulate tumor cell growth, invasion, and migration, there has been a growing amount of interest in the therapeutic potential of targeting Eps. In the present study, we investigated the role of EP4 on the effectiveness of cordycepin in inhibititing the migration and invasion of HCT116 human colorectal carcinoma cells. Our data indicate that cordycepin suppressed lipopolysaccharide (LPS)-enhanced cell migration and invasion through the inactivation of matrix metalloproteinases (MMP)-9 as well as the down-regulation of COX-2 expression and PGE2 production. These events were shown to be associated with the inactivation of EP4 and activation of AMP-activated protein kinase (AMPK). Moreover, the AMPK inhibitor, compound C, as well as AMPK knockdown via siRNA, attenuated the cordycepin-induced inhibition of EP4 expression. Cordycepin treatment also reduced the activation of CREB. These findings indicate that cordycepin suppresses the migration and invasion of HCT116 cells. Through modulating EP4 expression and the AMPK-CREB signaling pathway. Therefore, cordycepin has the potential to serve as a potent anti-cancer agent in therapeutic strategies against colorectal cancer metastasis.

  • PDF

Rg3-enriched red ginseng extracts enhance apoptosis in CoCl2-stimulated breast cancer cells by suppressing autophagy

  • Yun-Jeong Jeong;Mi-Hee Yu;Yuna Cho;Min-Young Jo;Kwon-Ho Song;Yung Hyun Choi;Taeg Kyu Kwon;Jong-Young Kwak;Young-Chae Chang
    • Journal of Ginseng Research
    • /
    • 제48권1호
    • /
    • pp.31-39
    • /
    • 2024
  • Background: Ginsenoside Rg3, a primary bioactive component of red ginseng, has anti-cancer effects. However, the effects of Rg3-enriched ginseng extract (Rg3RGE) on apoptosis and autophagy in breast cancer have not yet been investigated. In the present study, we explored the anti-tumor effects of Rg3RGE on breast cancer cells stimulated CoCl2, a mimetic of the chronic hypoxic response, and determined the operative mechanisms of action. Methods: The inhibitory mechanisms of Rg3RGE on breast cancer cells, such as apoptosis, autophagy and ROS levels, were detected both in vitro. To determine the anti-cancer effects of Rg3RGE in vivo, the cancer xenograft model was used. Results: Rg3RGE suppressed CoCl2-induced spheroid formation and cell viability in 3D culture of breast cancer cells. Rg3RGE promoted apoptosis by increasing cleaved caspase 3 and cleaved PARP and decreasing Bcl2 under the hypoxia mimetic conditions. Further, we identified that Rg3RGE promoted apoptosis by inhibiting lysosomal degradation of autophagosome contents in CoCl2-induced autophagy. We further identified that Rg3RGE-induced apoptotic cell death and autophagy inhibition was mediated by increased intracellular ROS levels. Similarly, in the in vivo xenograft model, Rg3RGE induced apoptosis and inhibited cell proliferation and autophagy. Conclusion: Rg3RGE-stimulated ROS production promotes apoptosis and inhibits protective autophagy under hypoxic conditions. Autophagosome accumulation is critical to the apoptotic effects of Rg3RGE. The in vivo findings also demonstrate that Rg3RGE inhibits breast cancer cell growth, suggesting that Rg3RGE has potential as potential as a putative breast cancer therapeutic.

종양억제유전자 p53 결손 인체간암세포에서 Pectenotoxin-2에 의한 Apoptosis 유도 (Apoptotic Cell Death by Pectenotoxin-2 in p53-Deficient Human Hepatocellular Carcinoma Cells)

  • 신동역;김기영;최병태;강호성;정지형;최영현
    • 생명과학회지
    • /
    • 제17권10호
    • /
    • pp.1447-1451
    • /
    • 2007
  • 해양생물 유래 항암활성을 가지는 천연물의 탐색과정에서 해면동물에서 유래된 PTX-2는 p53 결손 암세포에서 세포독성 효과가 높은 것으로 보고된 바 있다. 본 연구에서는 인체 간암세포 모델을 이용하여 PTX-2의 효능을 조사한 결과는 p53 결손 Hep3B 세포에서 p53 정상 HepG2에 비하여 항암활성이 매우 높았으며, 이는 apoptosis 유발과 연관성이 있음을 확인하였다. PTX-2에 의한 Hep3B 세포의 apoptosis 유발은 DFF family의 발현 변화, pro-apoptotic Bax 및 Bcl-xS 단백질의 발현 증가, caspases (-3, -8 및 -9)의 활성화 등이 관여함을 알 수 있었다. PTX-2는 또한 Hep3B 세포에서 AKT 및 ERK1/2의 활성화를 유도하였으며, caspase-3, AKT 및 ERK1/2의 특이적 저해제에 의하여 PTX-2에 의한 세포증식 억제 효능이 유의적으로 감소되었다. 본 연구는 PTX-2에 의한 Hep3B 세포에서의 apoptosis 유도에 AKT 및 ERK1/2 신호 전달 경로가 중요한 역할을 하고 있음을 보여주는 결과이다.

더덕 추출물의 항돌연변이 및 항종양 효과 (Antimutagenic and Antitumor Effects of Codonopsis lanceolata Extracts)

  • 김수현;최현진;정미자;최승필;함승시
    • 한국식품영양과학회지
    • /
    • 제38권10호
    • /
    • pp.1295-1301
    • /
    • 2009
  • 본 연구는 더덕의 돌연변이원성, 항돌연변이원성, 세포독성, 항종양 효과를 조사하기 위해서 수행되었다. 더덕을 70% 에탄올로 추출하여 추출용매에 따라 핵산, 클로로포름, 에틸아세테이트, 부탄올과 물 층으로 분획하였다. Ames test assay, SRB assay와 sarcoma-180 세포를 이용한 항종양 실험을 실시하였다. Ames test 결과, 더덕 에탄올 추출물은 돌연변이원성을 나타내지 않았다. 더덕 에틸아세테이트분획물은(200 ${\mu}g$/plate) 4NQO에 대하여 S. Typhimurium TA98과 TA100에서 각각 72.1% 및 67.0%의 억제율을 나타내었으며, MNNG에 대한 S. Typhimurium TA100은 69.6%의 억제율을 나타내었다. 더덕 추출물 및 분획물의 암세포성장 억제효과를 살펴보기 위해 인간 자궁경부암세포(HeLa), 인간 간암세포(HepG2), 인간 유방암세포(MCF-7), 인간 폐암세포(A549) 및 인간 신장정상세포(293)를 사용하였다. 더덕 에틸아세테이트 분획물을 1 mg/mL의 농도로 처리하였을 때 각각 74.5%(HeLa), 70.7%(MCF-7) 및 80.3%(A549)의 가장 높은 억제활성을 나타내었다. 반면에 인간 정상 신장세포(293)에서는 2$\sim$31%의 세포독성을 나타내었다. In vivo에서 더덕 추출물 및 분획물의 항암 효과를 검토하기 위하여 Balb/c 마우스에 sarcoma-180 종양세포로 고형암을 유발시켰다. 그 결과 더덕 에틸아세테이트 분획물의 최고농도 50 mg/kg에서 56.4%의 고형암 성장 억제 효과를 나타내었고, 이는 다른 추출물 및 분획물 중에서 가장 높은 억제율이었다.

Stichoposide D의 백혈병 세포주에서 세라마이드 생성을 통한 세포 사멸 유도 및 항암 작용 (Induction of Apoptosis and Antitumor Activity by Stichoposide D through the Generation of Ceramide in Human Leukemia Cells)

  • 박은선;윤성훈;신성원;곽종영;박주인
    • 생명과학회지
    • /
    • 제22권6호
    • /
    • pp.760-771
    • /
    • 2012
  • 해양 트리테르펜 글리코시드(marine triterpene glycosides)는 해삼(Holothurians)으로부터 분리된 천연물질로서 항 진균작용, 항암작용 및 용혈 작용 등 여러 가지 생물학적 활성들을 가지고 있다고 보고되었다. 또한 이전의 연구 결과 Thelenota anax로부터 분리한 stichoposide C (STC)는 산성 스핑고마이엘리나제와 중성 스핑고마이엘리나제의 활성화에 의한 세라마이드의 생성을 통하여 백혈병 세포주에서 세포사멸을 유도한다는 것을 알 수 있었다. 본 연구에서는 STC와 구조 유사체인 STD가 백혈병 세포에서 세포사멸을 유도하는지와 이에 대한 분자적 기전을 살펴보았다. STC와 STD는 K562 세포와 HL-60 세포에서 농도와 시간 의존적으로 세포 사멸을 일으키고 이러한 세포 사멸은 caspase-8의 활성화, 미토콘드리아 손상, caspase-9의 활성화, 그리고 caspase-3의 활성화에 의해 유도된다. 이러한 결과는 STC와 STD가 외인성 경로와 내인성 경로의 활성화를 통해 세포 사멸을 유도함을 시사한다. 그리고 STC는 산성 SMase와 중성 SMase를 활성화시키고 이 결과로 세라마이드를 생성시킨다. 산성과 중성 SMase의 특이적인 저해제를 이용하여 STC에 의한 세포 사멸이 부분적으로 억제됨을 알 수 있었다. 반면에, STD는 세라마이드 합성 효소의 활성화에 의해서 세라마이드를 생성시킨다. 세라마이드 합성 효소 저해제를 이용하여 STD에 의한 세포 사멸이 부분적으로 억제되는 것을 확인하였다. 더욱이 STC와 STD는 HL-60 세포의 이종 이식 종양 모델에서 종양의 성장을 현저하게 억제하였고 세라마이드의 생성도 증가시켰다. 이러한 결과는 STC와 STD가 aglycone에 부착된 당이 다르므로 서로 다른 경로를 통해 세포 사멸과 항암 활성을 유도한다는 것을 암시하였다. 따라서 이러한 결과는 이들의 작용은 aglycone에 부착된 당에 의해 영향을 받을 수 있고 이들은 향후 백혈병의 치료제로 사용될 수 있다는 것을 제시하였다.