DOI QR코드

DOI QR Code

Ginsenoside Rg3 in combination with artesunate overcomes sorafenib resistance in hepatoma cell and mouse models

  • Chen, Ying-Jie (School of Chinese Medicine, Hong Kong Baptist University) ;
  • Wu, Jia-Ying (School of Chinese Medicine, Hong Kong Baptist University) ;
  • Deng, Yu-Yi (School of Chinese Medicine, Hong Kong Baptist University) ;
  • Wu, Ying (School of Chinese Medicine, Hong Kong Baptist University) ;
  • Wang, Xiao-Qi (School of Chinese Medicine, Hong Kong Baptist University) ;
  • Li, Amy Sze-man (School of Chinese Medicine, Hong Kong Baptist University) ;
  • Wong, Lut Yi (School of Chinese Medicine, Hong Kong Baptist University) ;
  • Fu, Xiu-Qiong (School of Chinese Medicine, Hong Kong Baptist University) ;
  • Yu, Zhi-Ling (School of Chinese Medicine, Hong Kong Baptist University) ;
  • Liang, Chun (Division of Life Science, Hong Kong University of Science and Technology)
  • Received : 2021.04.20
  • Accepted : 2021.07.07
  • Published : 2022.05.01

Abstract

Background: Sorafenib is effective in treating hepatoma, but most patients develop resistance to it. STAT3 signaling has been implicated in sorafenib resistance. Artesunate (ART) and 20(R)-ginsenoside Rg3 (Rg3) have anti-hepatoma effects and can inhibit STAT3 signaling in cancer cells. This study aimed to evaluate the effects of Rg3 in combination with ART (Rg3-plus-ART) in overcoming sorafenib resistance, and to examine the involvement of STAT3 signaling in these effects. Methods: Sorafenib-resistant HepG2 cells (HepG2-SR) were used to evaluate the in vitro anti-hepatoma effects of Rg3-plus-ART. A HepG2-SR hepatoma-bearing BALB/c-nu/nu mouse model was used to assess the in vivo anti-hepatoma effects of Rg3-plus-ART. CCK-8 assays and Annexin V-FITC/PI double staining were used to examine cell proliferation and apoptosis, respectively. Immunoblotting was employed to examine protein levels. ROS generation was examined by measuring DCF-DA fluorescence. Results: Rg3-plus-ART synergistically reduced viability of, and evoked apoptosis in HepG2-SR cells, and suppressed HepG2-SR tumor growth in mice. Mechanistic studies revealed that Rg3-plus-ART inhibited activation/phosphorylation of Src and STAT3 in HepG2-SR cultures and tumors. The combination also decreased the STAT3 nuclear level and induced ROS production in HepG2-SR cultures. Furthermore, overactivation of STAT3 or removal of ROS diminished the anti-proliferative effects of Rg3-plus-ART, and removal of ROS diminished Rg3-plus-ART's inhibitory effects on STAT3 activation in HepG2-SR cells. Conclusions: Rg3-plus-ART overcomes sorafenib resistance in experimental models, and inhibition of Src/STAT3 signaling and modulation of ROS/STAT3 signaling contribute to the underlying mechanisms. This study provides a pharmacological basis for developing Rg3-plus-ART into a novel modality for treating sorafenib-resistant hepatoma.

Keywords

Acknowledgement

This study was supported by Jilin Yatai (Group) Co., Ltd., Guangzhou MSTB (grant No.: 202009020005), Hong Kong ITC (Grant No.: ITS/092/20), Shenzhen STIC (grant No.: JCYJ20200109150719846) and STIB of Guangzhou Development District (grant No.: CY2019-005).

References

  1. Llovet JM, Zucman-Rossi J, Eli P, Sangro B, Schwartz1 M, Sherman M, et al. Hepatocellular carcinoma. Nat Rev Dis Prim 2016;4:16018.
  2. Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, et al. Hepatocellular carcinoma. Nat Rev Dis Prim 2021;7:1-28. https://doi.org/10.1038/s41572-020-00234-1
  3. Su D, Wu B, Shi L. Cost-effectiveness of atezolizumab plus bevacizumab vs sorafenib as first-line treatment of unresectable hepatocellular carcinoma. JAMA Netw Open 2021;4:1-11.
  4. Cabral LKD, Tiribelli C, Sukowati CHC. Sorafenib resistance in hepatocellular carcinoma: the relevance of genetic heterogeneity. Cancers (Basel) 2020;12: 1-19. https://doi.org/10.3390/cancers12010001
  5. Zhao D, Zhai B, He C, Tan G, Jiang X, Pan S, et al. Upregulation of HIF-2α induced by sorafenib contributes to the resistance by activating the TGF-α/EGFR pathway in hepatocellular carcinoma cells. Cell Signal 2014;26:1030-9. https://doi.org/10.1016/j.cellsig.2014.01.026
  6. Mendez-Blanco C, Fondevila F, Garcia-Palomo A, Gonzalez-Gallego J, Mauriz JL. Sorafenib resistance in hepatocarcinoma: role of hypoxia-inducible factors. Exp Mol Med 2018;50:1-9.
  7. Chen J, Duda DG. Overcoming sorafenib treatment-resistance in hepatocellular carcinoma: a future perspective at a time of rapidly changing treatment paradigms. EBioMedicine 2020;52:6-7.
  8. China Association of Chinese Medicine. Guide to TCM diagnosis and treatment of cancer. Beijing: China Press of Traditional Chinese Medicine; 2008.
  9. Li XJ, Xiao F, Xiao ML. Clinical study of Shenyi capsule combined with anlotinib in treatment of advanced non- small cell lung cancer. J Hunan Norm Univ (Med Sci). 2020;17:81-3.
  10. Tan L, Pian Y, Zheng Z. Effect of Docetaxel combined Cisplatin plus Shenyi capsule in patients advanced gastric cancer. Clin J Med Off 2019;47.
  11. Sun M, Ye Y, Xiao L, Duan X, Zhang Y, Zhang H. Anticancer effects of ginsenoside Rg3 (review). Int J Mol Med 2017;39:507-18. https://doi.org/10.3892/ijmm.2017.2857
  12. Meng L, Ji R, Dong X, Xu X, Xin Y, Jiang X. Antitumor activity of ginsenoside Rg3 in melanoma through downregulation of the ERK and Akt pathways. Int J Oncol 2019;54:2069-79.
  13. Jiang ZS, Yang YF, Yang YL, Zhang Y, Yue ZS, Pan ZY, et al. Ginsenoside Rg3 attenuates cisplatin resistance in lung cancer by downregulating PD-L1 and resuming immune. Biomed Pharmacother 2017;96:378-83. https://doi.org/10.1016/j.biopha.2017.09.129
  14. Zhang Y, Xu G, Zhang S, Wang D, Saravana Prabha P, Zuo Z. Antitumor research on artemisinin and its bioactive derivatives. Nat Products Bioprospect 2018;8:303-19. https://doi.org/10.1007/s13659-018-0162-1
  15. Markowitsch SD, Schupp P, Lauckner J, Vakhrusheva O, Slade KS, Mager R, et al. Artesunate inhibits growth of sunitinib-resistant renal cell carcinoma cells through cell cycle arrest and induction of ferroptosis. Cancers (Basel) 2020;12:1-24. https://doi.org/10.3390/cancers12010001
  16. Krishna S, Ganapathi S, Ster IC, Saeed MEM, Cowan M, Finlayson C, et al. A randomised, double blind, placebo-controlled pilot study of oral artesunate therapy for colorectal cancer. EBioMedicine 2015;2:82-90. https://doi.org/10.1016/j.ebiom.2014.11.010
  17. von Hagens C, Walter-Sack I, Goeckenjan M, Storch-Hagenlocher B, Sertel S, Elsasser M, et al. Long-term add-on therapy (compassionate use) with oral artesunate in patients with metastatic breast cancer after participating in a phase I study (ARTIC M33/2). Phytomedicine 2019;54:140-8. https://doi.org/10.1016/j.phymed.2018.09.178
  18. He W Bin, Huang XX, Berges BK, Wang Y, An N, Su RJ, et al. Artesunate regulates neurite outgrowth inhibitor protein B receptor to overcome resistance to sorafenib in hepatocellular carcinoma cells. Front Pharmacol 2021;12:1-9.
  19. Yao X, Zhao CR, Yin H, Wang KW, Gao JJ. Synergistic antitumor activity of sorafenib and artesunate in hepatocellular carcinoma cells. Acta Pharmacol Sin 2020;41:1609-20. https://doi.org/10.1038/s41401-020-0395-5
  20. Xu L, Cao JP, Sun HP, Li X. Study on the anti-tumor activity of ginsenoside Rg3 combined with artesunate. China J Chinese Med 2013;28:6-7.
  21. Liu Y, Chen L, Yuan H, Guo S, Wu G. LncRNA DANCR promotes sorafenib resistance via activation of IL-6/STAT3 signaling in hepatocellular carcinoma cells. Onco Targets Ther 2020;13:1145-57. https://doi.org/10.2147/OTT.S229957
  22. Lee S, Lee MS, Kim CT, Kim IH, Kim Y. Ginsenoside RG3 reduces lipid accumulation with AMP-activated protein kinase (AMPK) activation in HepG2 cells. Int J Mol Sci 2012;13:5729-39. https://doi.org/10.3390/ijms13055729
  23. Pang Y, Qin G, Wu L, Wang X, Chen T. Artesunate induces ROS-dependent apoptosis via a Bax-mediated intrinsic pathway in Huh-7 and Hep3B cells. Exp Cell Res 2016;347:251-60. https://doi.org/10.1016/j.yexcr.2016.06.012
  24. Hassan Alin M, Ashton M, Kihamia CM, Mtey GJB, Bjorkman A. Multiple dose pharmacokinetics of oral artemisinin and comparison of its efficacy with that of oral artesunate in falciparum malaria patients. Trans R Soc Trop Med Hyg 1996;90:61-5. https://doi.org/10.1016/S0035-9203(96)90480-0
  25. Liu YX, Bai JX, Li T, Fu XQ, Chen YJ, Zhu PL, et al. MiR-let-7a/f-CCR7 signaling is involved in the anti-metastatic effects of an herbal formula comprising Sophorae Flos and Lonicerae Japonicae Flos in melanoma. Phytomedicine 2019;64:153084. https://doi.org/10.1016/j.phymed.2019.153084
  26. Tse AKW, Chen YJ, Fu XQ, Su T, Li T, Guo H, et al. Sensitization of melanoma cells to alkylating agent-induced DNA damage and cell death via orchestrating oxidative stress and IKKb inhibition. Redox Biol 2017;11:562-76. https://doi.org/10.1016/j.redox.2017.01.010
  27. Wu JY, Chen YJ, Bai L, Liu YX, Fu XQ, Zhu PL, et al. Chrysoeriol ameliorates TPA-induced acute skin inflammation in mice and inhibits NF-kB and STAT3 pathways. Phytomedicine 2020;68:153173. https://doi.org/10.1016/j.phymed.2020.153173
  28. Chen YJ, Liu YX, Wu JY, Li CY, Tang MM, Bai L, et al. A two-herb formula inhibits hyperproliferation of rheumatoid arthritis fibroblast-like synoviocytes. Sci Rep 2021;11:1-9. https://doi.org/10.1038/s41598-020-79139-8
  29. Tovar V, Cornella H, Moeini A, Vidal S, Hoshida Y, Sia D, et al. Tumour initiating cells and IGF/FGF signalling contribute to sorafenib resistance in hepatocellular carcinoma. Gut 2017;66:530-40. https://doi.org/10.1136/gutjnl-2015-309501
  30. Li Y, Chen G, Han Z, Cheng H, Qiao L, Li Y. IL-6/stat3 signaling contributes to sorafenib resistance in hepatocellular carcinoma through targeting cancer stem cells. Onco Targets Ther 2020;13:9721-30. https://doi.org/10.2147/OTT.S262089
  31. Gao L, Wang X, Tang Y, Huang S, Hu CAA, Teng Y. FGF19/FGFR4 signaling contributes to the resistance of hepatocellular carcinoma to sorafenib. J Exp Clin Cancer Res 2017;36:1-10. https://doi.org/10.1186/s13046-016-0473-1
  32. Xu WT, Shen GN, Luo YH, Piao XJ, Wang JR, Wang H, et al. New naphthalene derivatives induce human lung cancer A549 cell apoptosis via ROS-mediated MAPKs, Akt, and STAT3 signaling pathways. Chemico-Biological Interactions 2019;304:148-57. https://doi.org/10.1016/j.cbi.2019.03.004
  33. Perillo B, Di Donato M, Pezone A, Di Zazzo E, Giovannelli P, Galasso G, et al. ROS in cancer therapy: the bright side of the moon. Exp Mol Med 2020;52:192-203. https://doi.org/10.1038/s12276-020-0384-2
  34. Tang W, Chen Z, Zhang W, Cheng Y, Zhang B, Wu F, et al. The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical basis and therapeutic aspects. Signal Transduct Target Ther 2020;5:1-15. https://doi.org/10.1038/s41392-019-0089-y
  35. Meng J, Guo F, Xu H, Liang W, Wang C, Yang X Da. Combination therapy using Co-encapsulated resveratrol and paclitaxel in liposomes for drug resistance reversal in breast cancer cells in vivo. Sci Rep 2016;6:1-11. https://doi.org/10.1038/s41598-016-0001-8
  36. Zou L, Wang Di, Hu Y, Fu C, Li W, Dai L, et al. Drug resistance reversal in ovarian cancer cells of paclitaxel and borneol combination therapy mediated by PEG-PAMAM nanoparticles. Oncotarget 2017;8:60453-68. https://doi.org/10.18632/oncotarget.19728
  37. Dinic J, Efferth T, Garcia-Sosa AT, Grahovac J, Padron JM, Pajeva I, et al. Repurposing old drugs to fight multidrug resistant cancers. Drug Resist Updat 2020;52:100713. https://doi.org/10.1016/j.drup.2020.100713
  38. Efferth T, Oesch F. Repurposing of plant alkaloids for cancer therapy: pharmacology and toxicology. Semin Cancer Biol 2021;68:143-63. https://doi.org/10.1016/j.semcancer.2019.12.010
  39. Xie L, Zeng Y, Dai Z, He W, Ke H, Lin Q, et al. Chemical and genetic inhibition of STAT3 sensitizes hepatocellular carcinoma cells to sorafenib induced cell death. Int J Biol Sci 2018;14:577-85. https://doi.org/10.7150/ijbs.22220
  40. Tai WT, Cheng AL, Shiau CW, Liu CY, Ko CH, Lin MW, et al. Dovitinib induces apoptosis and overcomes sorafenib resistance in hepatocellular carcinoma through SHP-1-mediated inhibition of STAT3. Mol Cancer Ther 2012;11:452-63. https://doi.org/10.1158/1535-7163.MCT-11-0412
  41. Pelicano H, Carney D, Huang P. ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 2004;7:97-110. https://doi.org/10.1016/j.drup.2004.01.004
  42. Jiang J, Yuan Z, Sun Y, Bu Y, Li W, Fei Z. Ginsenoside Rg3 enhances the anti-proliferative activity of erlotinib in pancreatic cancer cell lines by down-regulation of EGFR/PI3K/Akt signaling pathway. Biomed Pharmacother 2017;96:619-25. https://doi.org/10.1016/j.biopha.2017.10.043
  43. Ma H, Yao Q, Zhang AM, Lin S, Wang XX, Wu L, et al. The effects of artesunate on the expression of EGFR and ABCG2 in A549 human lung cancer cells and a xenograft model. Molecules 2011;16:10556-69. https://doi.org/10.3390/molecules161210556
  44. Konkimalla V, McCubrey J, Efferth T. The role of downstream signaling pathways of the epidermal growth factor receptor for artesunates activity in cancer cells. Curr Cancer Drug Targets 2009;9:72-80. https://doi.org/10.2174/156800909787314020
  45. Shan X, Aziz F, Tian LL, Wang XQ, Yan Q, Liu JW. Ginsenoside Rg3-induced EGFR/MAPK pathway deactivation inhibits melanoma cell proliferation by decreasing FUT4/LeY expression. Int J Oncol 2015;46:1667-76. https://doi.org/10.3892/ijo.2015.2886