• 제목/요약/키워드: tube voltage

검색결과 597건 처리시간 0.03초

$Al_2O_3$ 비드를 가지는 방전관의 전계 및 대장균 제거 특성 (Electric Field Simulation and Removal Characteristics of Escherichia coli for Discharge Tube with $Al_2O_3$ Bead)

  • 이태관;이동훈
    • 대한환경공학회지
    • /
    • 제28권6호
    • /
    • pp.634-639
    • /
    • 2006
  • 본 연구에서는 구형 $Al_2O_3$를 갖는 방전관에 대한 전기분포의 시뮬레이션과 대장균 제거 특성을 조사하였다. 구형 $Al_2O_3$를 갖는 방전관을 이용한 대장균의 제거 특성을 실험한 결과 인가전압이 증가하면 전계도 증가를 하게 되는데 대장균의 제거 특성은 인가전압 즉 전계강도에 관계가 있음을 알 수 있었다. 그리고 방전관의 시험수 통과량이 증가하면 단위 시간당 전계영역의 통과횟수가 증가하기 때문에 대장균의 제거율이 증가하는 경향을 보였다. 또한 구형 $Al_2O_3$의 직경이 증가하면 유전체의 유전분극이 높아져 전계가 증가하기 때문에 전반적인 대장균 제거시간이 줄어드는 것을 알 수 있었고 구형 유전체를 갖는 방전관의 대장균 제거율은 유전체가 없는 경우보다 훨씬 높게 나타났다.

도식방법에 의한 MOSFET 단안정 멀티바이브레이터의 설계 (Design of a MOSFET Monostable Multivibrator by Graphical Method)

  • 심수보
    • 대한전자공학회논문지
    • /
    • 제13권1호
    • /
    • pp.11-15
    • /
    • 1976
  • 게이트 전류가 흐르지 않는 MOSFET를 사용한 단안정 멀티바치브레이터는 도전시에도 게이트 전압이 일정하게 유지되지 않기 때문에 이 전압을 기준으로 한 회로해석이나 설계는 매우 어려워서, 비교적 간단히 해결할 수있는 도식방법을 소개하였다. 즉 각FET의 전압이득곡선을 구하고 이 유선의 기본적인 성질과 국로 설계에 이용하는 방법들에 대해서 논하였다. In a MOSFET multivibrator, the gate do not hold into a constant clamp voltage during a conduction period. The analysis of the operation and the 43sign of a MOSFET multivibrator circuit are much more discult than that using a bipolar transistor and a electron tube because of above reason. And therefore, in the designing procedures of the MOSFET monostable multivibrator of this paper, a graphical method is adopted in order to analyze and design easily. The voltage gain curves of the both FETs are drawn using a parameter the voltage Vc across the coupling condenser, and the curves are utilized to investigate the voltages of the drains and the gates and determine the gate bias voltage. The diagram gives also important informations for the design of the multivibrator.

  • PDF

X-선 발생장치 정류방식에 따른 출력특성에 관한 연구

  • 나길주;백수웅;양현훈;박계춘
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.126-126
    • /
    • 2009
  • X-ray high-voltage generator is the most important part that can decide the radiation exposure dose affecting a patient or operator according to the characteristic. If decrease of X-ray radiation exposure dose and output characteristic of high-voltage generator is unstable, a patient or operator must be exposed to more radiation. This study measures and analyzes the exposure dose reproducibility and output characteristic according to a change of tube current on the various rectification methods of diagnostic X-ray equipment. It can find that quality bastardize and output is increased if voltage of X-ray tube is increased. Exposure dose reproducibility according to output of X-ray equipment is extremely excellent in inverter type, and is stable in order of following three-phase, a single-phase and condenser method. This study can find that the reply incidence of high-voltage generator is generated due to difference in rectification method, noise occurs in X-ray due to that, quality of an image is decreased due to that, and medical diagnosis can be failed due to that.

  • PDF

Analysis of Arc Tube Properties by Degradation in Ceramic Metal Halide Lamp

  • Yang, Jong-Kyung;Jang, Hyeok-Jin;Park, Dae-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권1호
    • /
    • pp.123-127
    • /
    • 2011
  • To clarify the relations of optical properties to the main factors responsible for the loss and damage of luminous efficacy, a 20 min turn-on/turn-off test for 2,000 h for a ceramic metal halide lamp is conducted. The corrosion rates of the arc tube wall and electrode are estimated based on thermal stress. Wall blackening is attributed to the tungsten being transported from the hot electrode tips to the relatively cold arc tube wall. Furthermore, the grain boundaries of the arc tube are changed by the degradation. Distortion of the electrode is observed, and the ignition and the driving voltage of the load both increase. Finally, the color rendering index and the color coordinates are changed after the degradation. The luminous flux and the intensity of the luminous distribution are decreased significantly.

질량유량제어기용 센서튜브의 정특성과 동특성에 관한 연구 (Dynamic and Static Characteristics of Sensor Tube for Mass Flow Controller)

  • 김영수;이상경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권3호
    • /
    • pp.531-537
    • /
    • 2004
  • In this paper, the static and dynamic characteristics in the sensor tube of a mass flow controller(MFC) were studied by experiments. In the sensor tube of MFC. the difference of temperature between inlet and outlet was necessary for calculating the mass flow rate. Therefore, the relations among flow rate, heat generated by heating wire. and sensor location were investigated to find optimized condition. Finally, the relation between sensor voltage through analog digital conversion(ADC) and flow rate in the sensor tube can be represented. Based on this study, static and dynamic characteristics of sensor tube can be used for design of mass flow controller.

마이크로파 탐색레이더 진행파관증폭기 정비시스템 구현 (Implementation of Traveling Wave Tube Amplifier Maintenance System for the Microwave Surveillance Radar)

  • 윤인철;권종원;박용만;오드게럴;김희식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.264-266
    • /
    • 2006
  • This traveling wave tube amplifier maintenance system was developed for performance of microwave Surveillance radar traveling wave tube amplification parts, and field operation. The Maintenance system is traveling wave tube amplification part RF output waveform measurement and HVPS Voltage adjustment and a maintenance function are offer. The system was developed as an embedded system base it consisted of Linux os which applied a top-down design and visual technique. Therefore change and easy extension of a system. This paper discussed characteristic of maintenance equipment function, composition, and an employment program.

  • PDF

영상장치 센서 데이터 QC에 관한 연구 (A study on imaging device sensor data QC)

  • 윤동민;이재영;박성식;전용한
    • Design & Manufacturing
    • /
    • 제16권4호
    • /
    • pp.52-59
    • /
    • 2022
  • Currently, Korea is an aging society and is expected to become a super-aged society in about four years. X-ray devices are widely used for early diagnosis in hospitals, and many X-ray technologies are being developed. The development of X-ray device technology is important, but it is also important to increase the reliability of the device through accurate data management. Sensor nodes such as temperature, voltage, and current of the diagnosis device may malfunction or transmit inaccurate data due to various causes such as failure or power outage. Therefore, in this study, the temperature, tube voltage, and tube current data related to each sensor and detection circuit of the diagnostic X-ray imaging device were measured and analyzed. Based on QC data, device failure prediction and diagnosis algorithms were designed and performed. The fault diagnosis algorithm can configure a simulator capable of setting user parameter values, displaying sensor output graphs, and displaying signs of sensor abnormalities, and can check the detection results when each sensor is operating normally and when the sensor is abnormal. It is judged that efficient device management and diagnosis is possible because it monitors abnormal data values (temperature, voltage, current) in real time and automatically diagnoses failures by feeding back the abnormal values detected at each stage. Although this algorithm cannot predict all failures related to temperature, voltage, and current of diagnostic X-ray imaging devices, it can detect temperature rise, bouncing values, device physical limits, input/output values, and radiation-related anomalies. exposure. If a value exceeding the maximum variation value of each data occurs, it is judged that it will be possible to check and respond in preparation for device failure. If a device's sensor fails, unexpected accidents may occur, increasing costs and risks, and regular maintenance cannot cope with all errors or failures. Therefore, since real-time maintenance through continuous data monitoring is possible, reliability improvement, maintenance cost reduction, and efficient management of equipment are expected to be possible.

An Intraoral Miniature X-ray Tube Based on Carbon Nanotubes for Dental Radiography

  • Kim, Hyun Jin;Kim, Hyun Nam;Raza, Hamid Saeed;Park, Han Beom;Cho, Sung Oh
    • Nuclear Engineering and Technology
    • /
    • 제48권3호
    • /
    • pp.799-804
    • /
    • 2016
  • A miniature X-ray tube based on a carbon-nanotube electron emitter has been employed for the application to a dental radiography. The miniature X-ray tube has an outer diameter of 7 mm and a length of 47 mm. The miniature X-ray tube is operated in a negative high-voltage mode in which the X-ray target is electrically grounded. In addition, X-rays are generated only to the teeth directions using a collimator while X-rays generated to other directions are shielded. Hence, the X-ray tube can be safely inserted into a human mouth. Using the intra-oral X-ray tube, a dental radiography is demonstrated where the positions of an X-ray source and a sensor are reversed compared with a conventional dental radiography system. X-ray images of five neighboring teeth are obtained and, furthermore, both left and right molar images are achieved by a single X-ray shot of the miniature X-ray tube.

Magnetron Sputter Coating of Inner Surface of 1-inch Diameter Tube

  • Han, Seung-Hee;An, Se-Hoon;Song, In-Seol;Lee, Keun-Hyuk;Jang, Seong-Woo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.135-135
    • /
    • 2015
  • Tubes are of extreme importance in industries as for fluid channels or wave guides. Furthermore, some weapon systems such as cannons use the tubes as gun barrels. To increase the service life of such tubes, a protective coating must be applied to the tubes' inner surface. However, the coating methods applicable to the inner surface of the tubes are very limited due to the geometrical restriction. A small-diameter cylindrical magnetron sputtering gun can be used to deposit coating layers on the inner surface of the large-bore tubes. However, for small-bore tubes with the inner diameter of one inch (~25 mm), the magnetron sputtering method can hardly be accommodated due to the space limitation for permanent magnet assembly. In this study, a new approach to coat the inner surface of small-bore tubes with the inside diameter of one inch was developed. Instead of using permanent magnets for magnetron operation, an external electro-magnet assembly was adopted around the tube to confine the plasma and to sustain the discharge. The electro-magnet was operated in pulse mode to provide the strong axial magnetic field for the magnetron operation, which was synchronized with the negative high-voltage pulse applied to the water-cooled coaxial sputtering target installed inside the tube. By moving the electro-magnet assembly along the tube's axial direction, the inner surface of the tube could be uniformly coated. The inner-surface coating system in this study used the tube itself as the vacuum chamber. The SS-304 tube's inner diameter was 22 mm and the length was ~1 m. A water-cooled Cu tube (sputtering target) of the outer diameter of 12 mm was installed inside of the SS tube (substrate) at the axial position. The 50 mm-long electro-magnet assembly was fed by a current pulse of 250 A at the frequency and pulse width of 100 Hz and 100 usec, respectively. The calculated axial magnetic field strength at the center was ~0.6 Tesla. The central Cu tube was synchronously driven by a HiPIMS power supply at the same frequency of 100 Hz as the electro-magnet and the applied pulse voltage was -1200 V with a pulse width of 500 usec. At 150 mTorr of Ar pressure, the Cu deposition rate of ~10 nm/min could be obtained. In this talk, a new method to sputter coat the inner surface of small-bore tubes would be presented and discussed, which might have broad industrial and military application areas.

  • PDF

Thermal Characteristics of Rotating Anode X-ray Tube with Emissivity in Aging Process for Digital Radiography

  • Lee, Seok Moon
    • Applied Science and Convergence Technology
    • /
    • 제24권5호
    • /
    • pp.125-131
    • /
    • 2015
  • We investigated the thermal characteristics of rotating anode X-ray tube to develop it for digital radiography by using computer simulation. The target which is the area of the anode struck by electrons is the most important component to get a long life of X-ray tube. So we analyze the thermal characteristics of the target and rotor assembly according to their emissivity by using ANSYS transient thermal simulation and then compare with the measured data of the target temperature operating in aging process of X-ray tube. Especially, keeping the lead coated layer as the role of metal lubricant on ball bearing enables to prevent the noise in rotating anode. The simulation result showed that its temperature was under the melting point of the lead in X-ray tube for digital radiography with 1.2 mm large focal spot 0.6 mm small focal spot and 150 kV tube voltage. We also investigated the relationship between the diameter of the anode shaft and the temperature of the anode and rotor assembly. It has been confirmed that the smaller anode shaft could be good for the rotor thermal characteristics.