저자는 기존의 연구에서 대용량-비선형성을 가지는 유체의 최적화를 수행하기 위해 몇 가지 강력한 방법들을 제시한 바 있다. 즉, 최적화 과정에서 수렴성을 높이기 위해 step by step기법을 사용하였고, 또한 수렴속도를 높이기 위하여 최적화이터레이션 과정에서 얻어지는 민감도정보를 이용하여 시스템 평형방정식의 해석을 위한 좋은 초기치를 제공하는 방법과, 평형방정식을 구속조건으로 사용하는 동시기법(simultaneous technique)에서 착안하여 해석과 최적화 수렴 판정치를 조작하는 방법을 제시한 바 있다. 그러나 그들 기법은 기본적으로 유사뉴턴법에 기본을 두고 있다. 현재까지 최적화에서 SQP기법을 사용할 때는 정확한 헤시안 매트릭스의 유도가 매우 까다롭고 힘들기 때문에 유사뉴턴법을 사용하고 있는 실정이다. 그러나 3차원 문제와 같이 더욱 큰 용량의 문제를 위해서는 진정한 의미에서의 뉴턴법, 트루 뉴턴법(true Newton method)을 사용할 필요가 있다. 본 연구에서는 트루 뉴턴법을 사용하기 위해 헤시안 매트릭스의 정확치를 얻는 과정을 유도하고 이를 기본으로 트루 뉴턴법을 이용한 최적화 루틴을 만들었다. 그리고 이를 3차원 문제에 적용하여 그 효과를 검증하였다.
Affine invariant sufficient conditions are given for two local convergence theorems involving inexact Newton-like methods. The first uses conditions on the first Frechet-derivative whereas the second theorem employs hypotheses on the second. Radius of con-vergence as well as rate of convergence results are derived. Results involving superlinear convergence and known to be true for inexact Newton methods are extended here. Moreover we show that under hypotheses on the second Frechet-derivation our radius of convergence results are derived. Results involving superlinear convergence and known to be true or inexact Newton methods are extended here. Moreover we show that under hypotheses on the second Frechet-derivative our radius of conver-gence is larger than the corresponding one in [10]. This allows a wider choice for the initial guess. A numerical example is also pro-vided to show that our radius of convergence is larger then the one in [10].
There are many available algorithms based on the different approaches to solve the intersection problems between two curves. Among them, the implicitization method is frequently used since it computes precise solutions fast and is robust in lower degrees. However, once the degrees of curves to be intersected are higher than cubics, its computation time increases rapidly and the numerical stability gets worse. From this observation, it is natural to transform the original problem into a set of easier ones. Therefore, curves are subdivided appropriately depending on their geometric behavior and approximated by a set of rational quadratic Bezier cures. Then, the implicitization method is applied to compute the intersections between approximated ones. Since the solutions of the implicitization method are intersections between approximated curves, a numerical process such as Newton-Raphson iteration should be employed to find true intersection points. As the seeds of numerical process are close to a true solution through the mix-and-match process, the experimental results illustrates that the proposed algorithm is superior to other algorithms.
In this manuscript we study perturbed Newton-like methods for the solution of nonlinear operator equations in a Banach space and their discretized versions in connection with the mesh independence principle. This principle asserts that the behavior of the discretized process is asymptotically the same as that for the original iteration and consequently, the number of steps required by the two processes to converge to within a given tolerance is essentially the same. So far this result has been proved by others using Newton's method for certain classes of boundary value problems and even more generally by considering a Lipschitz uniform discretization. In some of our earlierpapers we extend these results to include Newton-like methods under more general conditions. However, all previous results assume that the iterates can be computed exactly. This is mot true in general. That in why we use perturbed Newton-like methods and even more general conditions. Our results, on the one hand, extend, and on the other hand, make more practical and applicable all previous results.
본 연구에서는 철도차량의 차륜과 레일에 대해 플랜지 접촉을 포함하여 모든 위치예서 차륜-레일간 접촉 위치를 수치 해석적으로 구하는 방범을 제안한다. 이를 위해 차륜과 레일의 형상은 매개변수로 표현되는 3차원 곡면함수로 나타내었다. 기구학적 구속조건식을 Newton-Rhapson 방법을 이용하여 구하는 것과 차륜과 레일간 최소거리가 0이 된다는 최적화 방법을 동시에 이용하여 정확하고 효율적으로 계산하는 새로운 방법을 제안하였다.
Affine invariant sufficient conditions are given for two local convergence theorems involving inexact Newton-like methods. The first uses conditions on the first Frechet-derivative whereas the second theorem employs hypotheses on the mth(m≥2 an integer). Radius of convergence as well as rate of convergence results are derived. Results involving superlinear convergence and known to be true for inexact Newton methods are extended here. Moreover, we show that under hypotheses on the mth Frechet-derivative our radius of convergence can sometimes be larger than the corresponding one in [10]. This allows a wider choice for the initial guess. A numerical example is also provided to show that our radius of convergence is larger than the one in [10].
Communications for Statistical Applications and Methods
/
제13권2호
/
pp.429-440
/
2006
In statistical computing, it is often for researchers to need the distribution of a weighted sum of noncentral chi-square variables. In this case, it is very limited to know its exact distribution. There are many works to contribute to this topic, e.g. Imhof (1961) and Solomon-Stephens (1977). Imhof's method gives good approximation to the true distribution, but it is not easy to apply even though we consider the development of computer technology Solomon-Stephens's three moment chi-square approximation is relatively easy and accurate to apply. However, they skipped many details, and their simulation is limited to a weighed sum of central chi-square random variables. This paper gives details on Solomon-Stephens's method. We also extend their simulation to the weighted sum of non-central chi-square distribution. We evaluated approximated powers for homogeneous test and compared them with the true powers. Solomon-Stephens's method shows very good approximation for the case.
본 연구에서는 복잡한 지질구조에 대해서도 신속하고 효율적으로 주시를 계산할 수 있는 Straight Ray Technique(SRT)을 이용한 반사주시 토모그래피 역산 알고리듬을 개발하였다. 역산을 위한 초기 속도모델은 지층경계면에 임피던스 변화를 갖는 상속도 모델을 사용하였다. 실제 속도모델의 반사주시와 초기 속도모델의 반사주시 차이를 계산하여 각각의 요소마다 주시의 오차를 줄이는 방법인 가우스-뉴튼 알고리듬을 이용하여 역산온 수행하였다. 자코비안의 요소는 파선이 지나가는 거리함수로 구성되며, 이를 최소자승형태의 근사 헤시안 행렬로 구성하여 역산을 수행하였다. 역산시 해가 수렴할 수 있도록 근사 헤시안 행렬의 대각성분에 일정한 감쇠인자를 더하였다. 역산된 속도모델을 이용하여 Kirchhoff구조보정을 실시한 결과 실제 속도모델구조에 근사한 단면영상을 얹을 수 있었다.
본 연구는 부재의 응력, 절점의 횡변위 등 거동적 제약과 설계변수에 가해지는 부차적 제약을 받는 평면뼈대 구조물의 설계에 적용할 수 있는 최적규준을 제안하고자 하는 것이다. 변위 및 응력제약 모두에 1차 근사법을 적용하며 이는 전응력 설계방법과 다른 점이다. 비선형인 제약조건식을 푸는데 Newton-Raphson방법을 이용하고 최소치수 제약과 관련하여 설계공간을 축소하는 등 수학적으로 엄밀한 방법으로 재설계 알고리즘을 유도하였다. 적용 예를 통하여 이 방법이 정확한 방법임이 입증되었으며 전응력 설계가 최적설계가 되지 못하는 경우도 종종 발견되었다. 이 방법은 복잡한 계산과정 만큼 그 이용가치가 있으며 단순한 응력비 알고리즘을 이용하는 대부분의 최적규준 방법에 대치되어야 할 것이다. 특히, Computer의 지속적인 발전은 이 방법의 보편적인 이용을 가능하게 할 것이다.
For scaling of the gradient of misfit function, we develop a new pseudo-Hessian matrix constructed by combining amplitude field and pseudo-Hessian matrix. Since pseudo- Hessian matrix neglects the calculation of the zero-lag auto-correlation of impulse responses in the approximate Hessian matrix, the pseudo-Hessian matrix has a limitation to scale the gradient of misfit function compared to the approximate Hessian matrix. To validate the new pseudo- Hessian matrix, we perform frequency-domain elastic full waveform inversion using this Hessian matrix. By synthetic experiments, we show that the new pseudo-Hessian matrix can give better convergence to the true model than the old one does. Furthermore, since the amplitude fields are intrinsically obtained in forward modeling procedure, we do not have to pay any extra cost to compute the new pseudo-Hessian. We think that the new pseudo-Hessian matrix can be used as an alternative of the approximate Hessian matrix of the Gauss-Newton method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.