• Title/Summary/Keyword: tropical cyclone forecast

Search Result 26, Processing Time 0.023 seconds

Application of Vertical Grid-nesting to the Tropical Cyclone Track and Intensity Forecast

  • Kim, Hyeon-Ju;Cheong, Hyeong-Bin;Lee, Chung-Hui
    • Journal of the Korean earth science society
    • /
    • v.40 no.4
    • /
    • pp.382-391
    • /
    • 2019
  • The impact of vertical grid-nesting on the tropical cyclone intensity and track forecast was investigated using the Weather Research and Forecast (WRF) version 3.8 and the initialization method of the Structure Adjustable Balanced Bogus Vortex (SABV). For a better resolution in the central part of the numerical domain, where the tropical cyclone of interest is located, a horizontal and vertical nesting technique was employed. Simulations of the tropical cyclone Sanba (16th in 2012) indicated that the vertical nesting had a weak impact on the cyclone intensity and little impact on the track forecast. Further experiments revealed that the performance of forecast was quite sensitive to the horizontal resolution, which is in agreement with previous studies. The improvement is due to the fact that horizontal resolution can improve forecasts not only on the tropical cyclone-scale but also for large-scale disturbances.

Tropical Cyclone Track and Intensity Forecast Using Asymmetric 3-Dimensional Bogus Vortex (비축대칭 3차원 모조 소용돌이를 이용한 열대저기압의 진로 및 강도예측)

  • Lee, Jae-Deok;Cheong, Hyeong-Bin;Kang, Hyun-Gyu;Kwon, In-Hyuk
    • Atmosphere
    • /
    • v.24 no.2
    • /
    • pp.207-223
    • /
    • 2014
  • The bogussing method was further developed by incorporating the asymmetric component into the symmetric bogus tropical cyclone of the Structure Adjustable Balanced Vortex (SABV). The asymmetric component is separated from the disturbance field associated with the tropical cyclone by establishing local polar coordinates whose center is the location of the tropical cyclone. The relative importance of wave components in azimuthal direction was evaluated, and only two or three wave components with large amplitude are added to the symmetric components. Using the Weather Research and Forecast model (WRF), initialized with the asymmetric bogus vortex, the track and central pressure of tropical cyclones were predicted. Nine tropical cyclones, which passed over Korean peninsula during 2010~2012 were selected to assess the effect of asymmetric components. Compared to the symmetric bogus tropical cyclone, the track forecast error was reduced by about 18.9% and 17.4% for 48 hours and 72 hours forecast, while the central pressure error was not improved significantly. The results suggest that the inclusion of asymmetric component is necessary to improve the track forecast of tropical cyclones.

Seasonal Prediction of Tropical Cyclone Frequency in the Western North Pacific using GDAPS Ensemble Prediction System (GDAPS 앙상블 예보 시스템을 이용한 북서태평양에서의 태풍 발생 계절 예측)

  • Kim, Ji-Sun;Kwon, H. Joe
    • Atmosphere
    • /
    • v.17 no.3
    • /
    • pp.269-279
    • /
    • 2007
  • This study investigates the possibility of seasonal prediction for tropical cyclone activity in the western North Pacific by using a dynamical modeling approach. We use data from the SMIP/HFP (Seasonal Prediction Model Inter-comparison Project/Historical Forecast Project) experiment with the Korea Meteorological Administration's GDAPS (Global Data Assimilation and Prediction System) T106 model, focusing our analysis on model-generated tropical cyclones. It is found that the prediction depends primarily on the tropical cyclone (TC) detecting criteria. Additionally, a scaling factor and a different weighting to each ensemble member are found to be essential for the best predictions of summertime TC activity. This approach indeed shows a certain skill not only in the category forecast but in the standard verifications such as Brier score and relative operating characteristics (ROC).

Tropical Cyclone Center and Intensity Analysis from GMS-4 TBB data (GMS-4 $T_{BB}$ 자료를 이용한 태풍의 중심 및 강도 분석)

  • 김용상;서애숙;신도식;김동호
    • Korean Journal of Remote Sensing
    • /
    • v.12 no.2
    • /
    • pp.111-125
    • /
    • 1996
  • A forecast technique using GMS-4(Geostationary Meteorological Satellite) infrared images and its $T_{BB}$ (Brightness Temperature) data to determine the tropical cyclone center and to analyze the tropical cyclone intensity has been developed. First, the determination of typhoon center using $T_{BB}$ distribution pattern is practiced by understanding a special feature of central cloud pattern and cloud band which is analyzed with the method of pseudo coloring. Then, to forecast the intensity of tropical cyclone, a relationship between the central pressure (or maximum wind speed) of tropical cyclone and $T_{BB}$ measured by GMS near the tropical cyclone center was investigated. The results showed a correlation with a high lag relationship between central pressures and $T_{BB}$. The mean Tee in the ring of 200~300km apart from the tropical cyclone center showed the best correlation to central pressure of the tropical cyclone after 24hour. From this relationship, a regression equation to forecast the central pressure (or maximum wind speed) was derived.

Characteristics of Tropical Cyclones Over the Western North Pacific in 2009 (2009년 태풍 특징)

  • Cha, Eun-Jeong;Kwon, H. Joe;Kim, Sejin
    • Atmosphere
    • /
    • v.20 no.4
    • /
    • pp.451-466
    • /
    • 2010
  • This edition has continued since 2006 tropical cyclone season our effort to provide standard tropical cyclone summaries by the western North Pacific basin and detailed reviews of operationally or meteorologically significant tropical cyclones to document significant challenges and shortfalls in the tropical cyclone warning system to serve as a focal point for research and development efforts. The tropical cyclone season of 2009 in the western North Pacific basin is summarized and the main characteristics of general atmospheric circulation are described. Also, the official track and intensity forecasts of these cyclones are verified. The total number is less than 59-year (1951~2009) average frequency of 26.4. The 2009 western North Pacific season was an inactive one, in which 22 tropical storms generated. Of these, 13 TCs reached typhoon (TY) intensity, while the rest 9 TCs only reached severe tropical storm (STS) and tropical storm (TS) intensity - three STS and six TS storms. On average of 22 TCs in 2009, the Korea Meteorological Administration official track forecast error for 48 hours was 219 km. There was a big challenge for individual cyclones such as 0902 CHAN-HOM, 0909 ETAU, and 0920 LUPIT resulting in significant forecast error, with both intricate tracks and irregular moving speed. There was no tropical cyclone causing significant direct impact to the country. The tropical cyclone season in 2009 began in May with the formation of KUJIRA (0901). In September and October, ten TSs formed in the western North Pacific in response to enhanced convective activity. On the other hand, the TC activity was very weak from June to July. It is found that the unusual anti-cyclonic circulation in the lower level and weak convection near the Philippines are dominant during summertime. The convection and atmospheric circulation in the western North Pacific contributed unfavorable condition for TC activity in the 2009 summertime. Year 2009 has continued the below normal condition since mid 1990s which is apparent in the decadal variability in TC activity.

Development of the Selected Multi-model Consensus Technique for the Tropical Cyclone Track Forecast in the Western North Pacific (태풍 진로예측을 위한 다중모델 선택 컨센서스 기법 개발)

  • Jun, Sanghee;Lee, Woojeong;Kang, KiRyong;Yun, Won-Tae
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.375-387
    • /
    • 2015
  • A Selected Multi-model CONsensus (SMCON) technique was developed and verified for the tropical cyclone track forecast in the western North Pacific. The SMCON forecasts were produced by averaging numerical model forecasts showing low 70% latest 6 h prediction errors among 21 models. In the homogeneous comparison for 54 tropical cyclones in 2013 and 2014, the SMCON improvement rate was higher than the other forecasts such as the Non-Selected Multi-model CONsensus (NSMCON) and other numerical models (i.e., GDAPS, GEPS, GFS, HWRF, ECMWF, ECMWF_H, ECMWF_EPS, JGSM, TEPS). However, the SMCON showed lower or similar improvement rate than a few forecasts including ECMWF_EPS forecasts at 96 h in 2013 and at 72 h in 2014 and the TEPS forecast at 120 h in 2013. Mean track errors of the SMCON for two year were smaller than the NSMCON and these differences were 0.4, 1.2, 5.9, 12.9, 8.2 km at 24-, 48-, 72-, 96-, 120-h respectively. The SMCON error distributions showed smaller central tendency than the NSMCON's except 72-, 96-h forecasts in 2013. Similarly, the density for smaller track errors of the SMCON was higher than the NSMCON's except at 72-, 96-h forecast in 2013 in the kernel density estimation analysis. In addition, the NSMCON has lager range of errors above the third quantile and larger standard deviation than the SMCON's at 72-, 96-h forecasts in 2013. Also, the SMCON showed smaller bias than ECMWF_H for the cross track bias. Thus, we concluded that the SMCON could provide more reliable information on the tropical cyclone track forecast by reflecting the real-time performance of the numerical models.

Evaluation of the Numerical Models' Typhoon Track Predictability Based on the Moving Speed and Direction (이동속도와 방향을 고려한 수치모델의 태풍진로 예측성 평가)

  • Shin, Hyeonjin;Lee, WooJeong;Kang, KiRyong;Byun, Kun-Young;Yun, Won-Tae
    • Atmosphere
    • /
    • v.24 no.4
    • /
    • pp.503-514
    • /
    • 2014
  • Evaluation of predictability of numerical models for tropical cyclone track was performed using along-and cross-track component. The along-and cross-track bias were useful indicators that show the numerical models predictability associated with cause of errors. Since forecast errors, standard deviation and consistency index of along-track component were greater than those of cross-track component, there was some rooms for improvement in alongtrack component. There was an overall slow bias. The most accurate model was JGSM for 24-hour forecast and ECMWF for 48~96-hour forecast in direct position error, along-track error and cross-track error. ECMWF and GFS had a high variability for 24-hour forecast. The results of predictability by track type showed that most significant errors of tropical cyclone track forecast were caused by the failure to estimate the recurvature phenomenon.

Dynamic data-base Typhoon Track Prediction (DYTRAP) (동적 데이터베이스 기반 태풍 진로 예측)

  • Lee, Yunje;Kwon, H. Joe;Joo, Dong-Chan
    • Atmosphere
    • /
    • v.21 no.2
    • /
    • pp.209-220
    • /
    • 2011
  • A new consensus algorithm for the prediction of tropical cyclone track has been developed. Conventional consensus is a simple average of a few fixed models that showed the good performance in track prediction for the past few years. Meanwhile, the consensus in this study is a weighted average of a few models that may change for every individual forecast time. The models are selected as follows. The first step is to find the analogous past tropical cyclone tracks to the current track. The next step is to evaluate the model performances for those past tracks. Finally, we take the weighted average of the selected models. More weight is given to the higher performance model. This new algorithm has been named as DYTRAP (DYnamic data-base Typhoon tRAck Prediction) in the sense that the data base is used to find the analogous past tracks and the effective models for every individual track prediction case. DYTRAP has been applied to all 2009 tropical cyclone track prediction. The results outperforms those of all models as well as all the official forecasts of the typhoon centers. In order to prove the real usefulness of DYTRAP, it is necessary to apply the DYTRAP system to the real time prediction because the forecast in typhoon centers usually uses 6-hour or 12-hour-old model guidances.

A Consensus Technique for Tropical Cyclone Intensity Prediction over the Western North Pacific (북서태평양 태풍 강도 예측 컨센서스 기법)

  • Oh, Youjung;Moon, Il-Ju;Lee, Woojeong
    • Atmosphere
    • /
    • v.28 no.3
    • /
    • pp.291-303
    • /
    • 2018
  • In this study, a new consensus technique for predicting tropical cyclone (TC) intensity in the western North Pacific was developed. The most important feature of the present consensus model is to select and combine the guidance numerical models with the best performance in the previous years based on various evaluation criteria and averaging methods. Specifically, the performance of the guidance models was evaluated using both the mean absolute error and the correlation coefficient for each forecast lead time, and the number of the numerical models used for the consensus model was not fixed. In averaging multiple models, both simple and weighted methods are used. These approaches are important because that the performance of the available guidance models differs according to forecast lead time and is changing every year. In particular, this study develops both a multi-consensus model (M-CON), which constructs the best consensus models with the lowest error for each forecast lead time, and a single best consensus model (S-CON) having the lowest 72-hour cumulative mean error, through on training process. The evaluation results of the selected consensus models for the training and forecast periods reveal that the M-CON and S-CON outperform the individual best-performance guidance models. In particular, the M-CON showed the best overall performance, having advantages in the early stages of prediction. This study finally suggests that forecaster needs to use the latest evaluation results of the guidance models every year rather than rely on the well-known accuracy of models for a long time to reduce prediction error.

Characteristics of Tropical Cyclones over the Western North Pacific in 2008 (2008년 태풍 특징)

  • Cha, Eun-Jeong;Hwang, Ho-Seong;Yang, Kyung-Jo;Won, Seong-Hee;Ko, Seong-Won;Kim, Dong-Ho;Kwon, H. Joe
    • Atmosphere
    • /
    • v.19 no.2
    • /
    • pp.183-198
    • /
    • 2009
  • The purpose of this study is to summarize the tropical cyclone (TC) activity of 2008 over the western North Pacific including the verification of the official track and intensity forecast errors of these TCs. The TC activity - frequency, Normalized Typhoon Activity (NTA), and life span - was lower than 58-year (1951-2008) average. 22 tropical cyclones of tropical storm (TS) intensity or higher formed in the western North Pacific and the South China Sea in 2008. The total number is less than 58-year average frequency of 26.4. Out of 22 tropical cyclones, 11 TCs reached typhoon (TY) intensity, while the rest 11 TCs only reached severe tropical storm (STS) and tropical storm (TS) intensity - six STS and five TS storms. One typhoon KALMAEGI (0807) among them affected the Korea peninsula. However, no significant impact - casualty or property damage - was reported. On average of 22 TCs in 2008, the Korea Meteorological Administration (KMA) official track forecast error for 48 hours was 229 km. There was a big challenge for individual cyclones such as 0806 FENGSHEN and 0817 HIGOS presenting significant forecast error, with both intricate tracks and irregular moving speed. The tropical cyclone season in 2008 began in April with the formation of NEOGURI (0801). In May, four TCs formed in the western North Pacific in response to enhanced convective activity. On the other hand, the TC activity was very weak from June to August. It is found that the unusual anti-cyclonic circulation in the lower level and weak convection near the Philippines are dominant during summertime. The convection and atmospheric circulation in the western North Pacific contributed unfavorable condition for TC activity in the 2008 summertime. The 2008 TC activity has continued the below normal state since mid 1990s which is apparent the decadal variability in TC activity.