• Title/Summary/Keyword: trophic

Search Result 477, Processing Time 0.033 seconds

Characteristics of Fish Fauna in the Lower Geum River and Identification of Trophic Guilds using Stable Isotopes Analysis (금강하류의 어류상 및 안정동위원소 분석을 이용한 섭식길드 파악)

  • Yoon, Ju-Duk;Park, Sang-Hyeon;Chang, Kwang-Hyeon;Choi, Jong-Yun;Joo, Gea-Jae;Nam, Gui-Sook;Yoon, Johee;Jang, Min-Ho
    • Korean Journal of Environmental Biology
    • /
    • v.33 no.1
    • /
    • pp.34-44
    • /
    • 2015
  • Fish fauna, difference of stable isotope ratio between freshwater and seawater, and trophic guilds of freshwater fishes were investigated in the lower Geum River. The study was conducted in 2011, and total study area was about 30 km of 20 km upstream and 10 km downstream from the Geum River estuary barrage. Only freshwater fishes were used for analyzing trophic guilds, and discriminant function analysis (DFA) was utilized to reclassify trophic guilds based on stable isotope ratio. Fish fauna in freshwater and seawater areas were entirely different each other, but small number of migratory species such as Coilia nasus and Chelon haematocheilus occurred both areas. Other species were not collected in the different areas because they did not have physiological ability to adapt different salinity concentrations. Stable isotope ration of two areas were different considerably due to food sources. Estuary and seawater fishes uptake food sources originated from marine, and freshwater fishes were from freshwater and terrestrial. Some migratory species showed reverse stable isotope ratio. Even though they collected in freshwater, they showed stable isotope ratio of seawater. This is because ecological characteristics of each species. Trophic guilds of freshwater fishes were reclassified by DFA, and showed slight difference with literatures. However, because this result is related with ontogenetic shift of species, more studies are needed to explain exact and correct trophic guilds. Stable isotope ratio can be changed among regions, seasons and ontogenetic stage, thus we always consider these aspects when analyzing results to get a right answer.

Reservoir Trophic State and Empirical Model Analysis, Based on Nutrients, Transparency, and Chlorophyll-${\alpha}$ Along with Their Relations Among the Parameters (영양염류, 투명도 및 엽록소를 이용한 인공호 영양상태, 경험적 모델 분석 및 변수들 간의 상호관계)

  • An, Kwang-Guk;Kim, Jae-Kyeng;Lee, Sang-Jae
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.3
    • /
    • pp.252-263
    • /
    • 2008
  • The purpose of this study was to determine trophic state, based on nutrients (TN, TP), transparency (SD), and chlorophyll-${\alpha}$ (Chl) and identify their empirical relations of TN-Chl, TP-Chl and Chl-SD depending on the dataset used along with dynamics of conductivity and suspended solids. Analysis of trophic states showed that more than half of 36 reservoirs were judged as eutrophic-hypertrophic conditions depending on the trophic variables. Seasonal values of TP varied by nearly 500% and showed greater in August than any other months. In contrast, TN varied within less than 90% and all monthly mean values of TN were never fall less than 1.2 mg L$^{-1}$ indicating low seasonal variations and high ambient concentrations (eutrophic-hypertrophic state). Analysis of empirical relations in the trophic variables showed that transparency had greater functional relations with Chl (R$^2$=0.31, p<0.001) than TP (R$^2$=0.15, p<0.001) and TN (R$^2$=0.20, p<0.001). Ratios of TN : TP in the ambient water indicated that most reservoirs showed a potential phosphorous limitation on the algal growth. Thus, algal biomass, based on Chl values, was more regulated by phosphorous than nitrogen. Analysis of linear regression model, based on log-transformed annual mean values, showed that only 30% in the variation of Chl was explained by TP (R$^2$=0.295, p=0.001, n=36) and 15% by TN (R$^2$=0.151, p=0.019, n=36). However, linear regression model, based on individual system, showed that Chl-TP model had strong positive relations (R$^2$=0.62, p=0.002, n=12), whereas the model had no any relations (p=0.892, n=12). Overall, our data suggested that averaging effect in the empirical model developments may influence the significance in the statistical analysis.

Study of the Trophic State Assessment and Analysis of Water Quality Improvement by Dredging in Hwoiya Reservoir (회야호 부영양화 평가 및 준설에 의한 수질개선 효과 분석 연구)

  • Suh, Myung-Gyo;Lee, Sang-Hyeon;Suh, Jung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6943-6951
    • /
    • 2014
  • The trophic state assessment of the Hwoiya reservoir was estimated using the Trophic state indices (TSIs) of Carlson and Aizaki using the transparency and concentrations of chlorophyll-a and total phosphorus obtained from two sites of the reservoir. The TSIs assessments showed that eutrophic phenomena occur frequently in the Hwoiya reservoir. In addition, strategies to reduce the phosphorus especially would be prepared because the Hwoiya reservoir exceeded phosphorus-limiting state of 17 < TN/TP (total nitrogen/total phosphorus). Three scenarios for a simulation of the dredging effect of sediments on the water quality using the WASP7 model were made at two sites, which were 10% (scenario 1), 40% (scenario 2) and 60% elution of the pollutants from sediments (scenario 3). In the most elution case (60%), scenario 3, it was considered that 6.4% TN and 9.3% TP at site 1, and 3.9% TN and 5.6% TP at site 2 could be reduced.

Seasonal Dynamics of Fish Fauna and Compositions in the Gap Stream Along With Conventional Water Quality

  • Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.4
    • /
    • pp.503-510
    • /
    • 2007
  • The purposes of the study were to analyze the seasonal effects on the fish fauna and compositions including trophic guilds and tolerance guilds. For the study, we collected fish samples twice in June as premonsoon period and early September 2007 as monsoon periods in five sampling sites of the Gap Stream, and then biological oxygen demand (BOD), nutrients (TN, TP) and suspended solids (SS) were compared with the guild data along the gradient of upstream-to-downstream. Chemical water quality, based on BOD, TP, and TN degraded gradually from the upstream to downstream reach and there were about 3 fold difference between S1 and S5. Water quality was worse in the premonsoon than the monsoon, and the heavy monsoon resulted in a dilution of the polluted river by rain water, especially, in the downstream reach. Total number of fish species, based on the catch per unit effort (CPUE), showed a distinct difference between the two seasons; 30 species were sampled in premonsoon, but 23 species were sampled in the monsoon, indicating a seasonal difference in the fish fauna. Tolerant species dominated the fish community (48.3%) in the stream, and the proportions prior to physical disturbance by the monsoon rain were evidently greater in the downstream reach than the upstream. This reflected the characteristics of urban stream polluted by nutrient enrichment as shown in the BOD and TP values. Sensitive species in the premonsoon decreased from the gradient of upstream-to-downstream reach. Such seasonal modifications in the trophic and tolerance guilds were evident. In the analysis of trophic guild and habitat guild, during the premonsoon the proportion of insectivore and riffle-benthic species were largely greater in the upstream reach than the downstream, whereas the proportions were opposite along the gradient of the stream in monsoon. Thus, the patterns of chemical water quality along the longitudinal gradients reflected the premonsoon conditions of insectivores and tolerant species, indicating that summer monsoon data of fish may not match with water quality due to large physical disturbance by flow regime. Seasonal monsoon in this region as well as the chemical pollution may act as a key role influencing the fish compositions of trophic and tolerance guilds and fauna. The data collected during the premonsoon rather than the monsoon, thus, may be better predictor for a diagnosis of stream health conditions.

Determination of Trophic Position Using Nitrogen Isotope Ration of Individual Amino Acid in the Geum Estuary (금강 하구 생태계에서 아미노산의 질소 안정동위원소비를 이용한 섭식생물의 영양단계 파악)

  • Choi, Hyuntae;Choi, Bohyung;Shin, Kyung-Hoon
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.4
    • /
    • pp.432-440
    • /
    • 2017
  • Compound specific isotope analysis of amino acids (CSIA-AAs) is being highlighted as an alternative approach for overcoming some restrictions in application of stable isotope analysis of bulk tissue (SIA) for trophic position (TP) estimation. However, this approach has rarely been applied in Korea. The present study determines TP of two Polychaeta (Nephtyidae and Glyceridae) and two fish species(Platycephalus indicus and Lophius litulon) collected from the Geum River estuary using nitrogen isotope ratio of amino acid and compared with the TP values estimated by SIA. The Polychaeta species, sampled in two sites, showed similar TP between SIA(2.7 and 3.1) and CSIA-AAs (2.6 and 3.1). However, for both fish species, TP values displayed a large difference between SIA (3.1 and 2.3) and CSIA-AAs (3.8 and 3.7). In this study TP values estimated by CSIA-AAs showed more similar to the previously reported gut content analysis of both fishes compared with the results of SIA. Current study suggests the applicability of nitrogen isotope ratio of amino acid to understand coastal ecosystem structure and trophic ecology.

Feeding Habits and Trophic Level of Blackthroat Seaperch, Doederleinia berycoides in the South Sea of Korea (한국 남해에서 출현하는 눈볼대(Doederleinia berycoides)의 식성과 영양단계)

  • Kim, Do-Gyun;Kim, Hyeon Ji;Lee, Seung-Jong;Baeck, Gun Wook
    • Korean Journal of Ichthyology
    • /
    • v.34 no.3
    • /
    • pp.172-178
    • /
    • 2022
  • To investigate the feeding habits and trophic level of the blackthroat seaperch, Doederleinia berycoides in the South Sea of Korea, fish samples were collected by a bottom trawl net from fisheries resources survey vessels of NIFS in February, May, August and November 2021. The total length (TL) of these specimens was from 3.3 to 33.1 cm. D. berycoides fed majorly on Teleostei (especially Engraulis japonicus) based on index of relative importance (%IRI=64.4%). D. berycoides underwent an ontogenetic dietary shift. Smaller individuals (<10.0 cm TL) fed mainly on amphipods. The proportion of amphipods decreased as body size increased, whereas the consumption of Teleostei increased gradually. Examination of the feeding habits according to ontogentic feeding patterns in the diets of D. berycoides revealed that the mean weight of prey (mW/ST) continuously increased, while mean number of prey (mN/ST) decreased and then increased. The estimated average trophic level of the D. berycoides was 3.62±0.64, ranging from 3.31±0.52 to 3.79±0.70.

Influene of aquatic macrophytes on the interactions among aquatic organisms in shallow wetlands (Upo Wetland, South Korea)

  • Jeong, Keon-Young;Choi, Jong-Yun;Jeong, Kwang-Seuk
    • Journal of Ecology and Environment
    • /
    • v.37 no.4
    • /
    • pp.185-194
    • /
    • 2014
  • Seasonal monitoring was implemented to understand the influence of macrophyte bed structure on the composition and trophic interaction of aquatic organisms (algae, zooplankton, macro-invertebrate, and fish) in a shallow wetland (Upo Wetland, South Korea). Distinct division of the plant assemblage (reed zone and mixed plant zone) was observed. The reed zone was composed solely of Phragmites communis, whereas the mixed plant zone comprised a diverse macrophyte assemblage (Salvinia natans, Spirodela polyrhiza, Trapa japonica, Ceratophyllum demersum, and Hydrilla verticillata). Most of the aquatic organisms were more abundant in the mixed plant zone than in the reed zone, and this was positively associated with the seasonal development of macrophyte cover. Stable isotope analysis showed seasonal interactions among aquatic organisms. The majority of aquatic animal (zooplankton, Odonata, and Ephemeroptera) were dependent on epiphytic particulate organic matter (EPOM), and the dependence on EPOM gradually increased toward autumn. Interestingly, Lepomis macrochirus consumed Ephemeroptera and zooplankton in both macrophyte zones, but Micropterus salmoides depended on different food items in the reed zone and the mixed plant zone. Although, M. salmoides in the reed zone showed food utilization similar to L. macrochirus, it consumed Odonata or small L. macrochirus in the mixed plant zone. Based on these results, it appears that differences in the structure of the two macrophyte zones support different assemblages of aquatic organisms, strongly influencing the trophic interactions between the aquatic organisms.

Epibionts associated with floating Sargassum horneri in the Korea Strait

  • Kim, Hye Mi;Jo, Jihoon;Park, Chungoo;Choi, Byoung-Ju;Lee, Hyun-Gwan;Kim, Kwang Young
    • ALGAE
    • /
    • v.34 no.4
    • /
    • pp.303-313
    • /
    • 2019
  • Floating seaweed rafts are a surface-pelagic habitat that serve as substrates for benthic flora and fauna. Since 2008, Sargassum horneri clumps have periodically invaded the Korea Strait. In this study, the polymerase chain reaction-free small-organelles enriched metagenomics method was adopted to identify the species of epibiotic eukaryotes present in floating S. horneri fronds. A total of 185 species were identified, of which about 63% were previously undetected or unreported in Korean waters. The rafts harbored a diverse assemblage of eukaryotic species, including 39 Alveolata, 4 Archaeplastida, 95 Opisthokonts, 4 Rhizaria, and 43 Stramenopiles. Of these 185 taxa, 48 species were found at both Sargassum rafts collection stations and included 24 Stramenopiles, 17 Alveolata, and 7 Opisthokonts. Among these, the highest proportion (50%) of species was photo-autotrophic in basic trophic modes, while the proportion of phagotrophic, osmo- or saprotrophic, and parasitic modes were 43.8%, 4.2%, and 2.1%, respectively. This study demonstrates the contribution of floating Sargassum rafts as dispersal vectors that facilitate the spread of alien species.

Water Quality Modeling and Response Assessment in the Yellow Sea and the East China Sea (황해 및 동중국해의 수질예측과 응답성 평가)

  • Lee, Dae-In
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.3
    • /
    • pp.445-460
    • /
    • 2012
  • In order to evaluate and predict the environmental impact of the low-trophic-level ecosystem to environmental changes in the Yellow Sea and the East China Sea, an ecological modelling study was undertaken. Simulation results of average distribution patterns and concentrations of water quality factors during the summer by the model were acceptable. Phytoplankton and remineralization rate of organic matter were very important parameters by a sensitivity analysis. Water quality factors showed high values in the estuary of the Yangtze River and in the West and South Sea of Korea and low values in the central area of the Yellow Sea. There is a plume of high values, especially nutrients, off the mouth of the Yangtze that expands or contracts with changes in the discharge strength. Characteristics of responses of water quality factors vary for different scenarios of environmental change, such as land-based pollution sources and atmospheric forcing. It is suggested that changes of light intensity, discharges of input sources, and wind play an important role in the marine ecosystem.