DOI QR코드

DOI QR Code

Epibionts associated with floating Sargassum horneri in the Korea Strait

  • Kim, Hye Mi (Department of Oceanography, College of Natural Sciences, Chonnam National University) ;
  • Jo, Jihoon (Marine Ecosystem Disturbing and Harmful Organisms (MEDHO) Research Center) ;
  • Park, Chungoo (Marine Ecosystem Disturbing and Harmful Organisms (MEDHO) Research Center) ;
  • Choi, Byoung-Ju (Department of Oceanography, College of Natural Sciences, Chonnam National University) ;
  • Lee, Hyun-Gwan (Department of Oceanography, College of Natural Sciences, Chonnam National University) ;
  • Kim, Kwang Young (Department of Oceanography, College of Natural Sciences, Chonnam National University)
  • Received : 2019.10.05
  • Accepted : 2019.12.10
  • Published : 2019.12.15

Abstract

Floating seaweed rafts are a surface-pelagic habitat that serve as substrates for benthic flora and fauna. Since 2008, Sargassum horneri clumps have periodically invaded the Korea Strait. In this study, the polymerase chain reaction-free small-organelles enriched metagenomics method was adopted to identify the species of epibiotic eukaryotes present in floating S. horneri fronds. A total of 185 species were identified, of which about 63% were previously undetected or unreported in Korean waters. The rafts harbored a diverse assemblage of eukaryotic species, including 39 Alveolata, 4 Archaeplastida, 95 Opisthokonts, 4 Rhizaria, and 43 Stramenopiles. Of these 185 taxa, 48 species were found at both Sargassum rafts collection stations and included 24 Stramenopiles, 17 Alveolata, and 7 Opisthokonts. Among these, the highest proportion (50%) of species was photo-autotrophic in basic trophic modes, while the proportion of phagotrophic, osmo- or saprotrophic, and parasitic modes were 43.8%, 4.2%, and 2.1%, respectively. This study demonstrates the contribution of floating Sargassum rafts as dispersal vectors that facilitate the spread of alien species.

Keywords

References

  1. Abe, H., Komatsu, T., Kokubu, Y., Natheer, A., Rothausler, E. A., Shishido, H., Yoshizawa, S. & Ajisaka, T. 2013. Invertebrate fauna associated with floating Sargassum horneri (Fucales: Sargassaceae) in the East China Sea. Species Divers. 18:75-85. https://doi.org/10.12782/sd.18.1.075
  2. Adl, S. M., Bass, D., Lane, C. E., Lukes, J., Schoch, C. L., Smirnov, A., Agatha, S., Berney, C., Brown, M. W., Burki, F., Cardenas, P., Cepicka, I., Chistyakova, L., del Campo, J., Dunthorn, M., Edvardsen, B., Eglit, Y., Guillou, L., Hampl, V., Heiss, A. A., Hoppenrath, M., James, T. Y., Karnkowska, A., Karpov, S., Kim, E., Kolisko, M., Kudryavtsev, A., Lahr, D. J. G., Lara, E., Le Gall, L., Lynn, D. H., Mann, D. G., Massana, R., Mitchell, E. A. D., Morrow, C., Park, J. S., Pawlowski, J. W., Powell, M. J ., Richter, D. J., Rueckert, S., Shadwick, L., Shimano, S., Spiegel, F. W., Torruella, G., Youssef, N., Zlatogursky, V. & Zhang, Q. 2019. Revisions to the classification, nomenclature, and diversity of eukaryotes. J. Eukaryot. Microbiol. 66:4-119. https://doi.org/10.1111/jeu.12691
  3. Arroyo, N. L. & Bonsdorff, E. 2016. The role of drifting algae for marine biodiversity. In Olafsson, E. (Ed.) Marine Macrophytes as Foundation Species. CRC Press, Boca Raton, FL, pp. 100-129.
  4. Bolger, A. M., Lohse, M. & Usadel, B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114-2120. https://doi.org/10.1093/bioinformatics/btu170
  5. Carlton, J. T., Chapman, J. W., Geller, J. B., Miller, J. A., Carlton, D. A., McCuller, M. I., Treneman, N. C., Steves, B. P. & Ruiz, G. M. 2017. Tsunami-driven rafting: transoceanic species dispersal and implications for marine biogeography. Science 357:1402-1406. https://doi.org/10.1126/science.aao1498
  6. Carlton, J. T. & Geller, J. B. 1993. Ecological roulette: the global transport of nonindigenous marine organisms. Science 261:78-82. https://doi.org/10.1126/science.261.5117.78
  7. Chamberlain, S. A. & Szocs, E. 2013. taxize: taxonomic search and retrieval in R. F1000Res 2:191. https://doi.org/10.12688/f1000research.2-191.v1
  8. Chang, P.-H. & Isobe, A. 2003. A numerical study on the Chagnjiang diluted water in the Yellow and East China Seas. J. Geophys. Res. 108:3299. https://doi.org/10.1029/2002JC001749
  9. Choi, C. G., Kim, H. G. & Sohn, C. H. 2003. Transplantation of young fronds of Sargassum horneri for construction of seaweed beds. Korean J. Fish. Aquat. Sci. 36:469-473. https://doi.org/10.5657/KFAS.2003.36.5.469
  10. Clarkin, E., Maggs, C. A., Allcock, A. L. & Johnson, M. P. 2012. Environment, not characteristics of individual algal rafts, affects composition of rafting invertebrate assemblages in Irish coastal waters. Mar. Ecol. Prog. Ser. 470:31-40. https://doi.org/10.3354/meps09979
  11. Fraser, C. I., Nikula, R. & Waters, J. M. 2011. Oceanic rafting by a coastal community. Proc. R. Soc. B 278:649-655. https://doi.org/10.1098/rspb.2010.1117
  12. Genty, B., Briantais, J.-M. & Baker, N. R. 1989. The relationship between the quantum yield of photosynthesis electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta Gen. Subj. 990:87-92. https://doi.org/10.1016/S0304-4165(89)80016-9
  13. Jo, J., Lee, H.-G., Kim, K. Y. & Park, C. 2019. SoEM: a novel PCR-free biodiversity assessment method based on small-organelles enriched metagenomics. Algae 34:57-70. https://doi.org/10.4490/algae.2019.34.2.26
  14. Kang, E. J., Kim, J.-H., Kim, K. & Kim, K. Y. 2016. Adaptations of a green tide forming Ulva linza (Ulvophyceae, Chlorophyta) to selected salinity and nutrients conditions mimicking representative environments in the Yellow Sea. Phycologia 55:210-218. https://doi.org/10.2216/15-67.1
  15. Kaplanis, N. J., Harris, J. L. & Smith, J. E. 2016. Distribution patterns of the non-native seaweeds Sargassum horneri (Turner) C. Agardh and Undaria pinnatifida (Harvey) Suringar on the San Diego and Pacific coast of North America. Aquat. Invasions 11:111-124. https://doi.org/10.3391/ai.2016.11.2.01
  16. Kim, K., Shin, J., Kim, K. Y. & Ryu, J.-H. 2019. Long-term trend of green and golden tides in the Eastern Yellow Sea. J. Coast. Res. 90:317-323. https://doi.org/10.2112/SI90-040.1
  17. Komatsu, T., Fukuda, M., Mikami, A., Mizuno, S., Kantachumpoo, A., Tanoue, H. & Kawamiya, M. 2014a. Possible change in distribution of seaweed, Sargassum horneri, in northeast Asia under A2 scenario of global warming and consequent effect on some fish. Mar. Pollut. Bull. 85:317-324. https://doi.org/10.1016/j.marpolbul.2014.04.032
  18. Komatsu, T., Mizuno, S., Natheer, A., Kantachumpoo, A., Tanaka, K., Morimoto, A., Hsiao, S. T., Rothausler, E. A., Shishidou, H., Aoki, M. & Ajisaka, T. 2014b. Unusual distribution of floating seaweeds in the East China Sea in the early spring of 2012. J. Appl. Phycol. 26:1169-1179. https://doi.org/10.1007/s10811-013-0152-y
  19. Larsson, M. E., Laczka, O. F., Suthers, I. M., Ajani, P. A. & Doblin, M. A. 2018. Hitchhiking in the East Australian Current:rafting as a dispersal mechanism for harmful epibenthic dinoflagellates. Mar. Ecol. Prog. Ser. 596:49-60. https://doi.org/10.3354/meps12579
  20. Lie, H.-J. & Cho, C.-H. 2016. Seasonal circulation patterns of the Yellow and East China Seas derived from satellitetracked drifter trajectories and hydrographic observations. Prog. Oceanogr. 146:121-141. https://doi.org/10.1016/j.pocean.2016.06.004
  21. Macaya, E. C., Lopez, B., Tala, F., Tellier, F. & Thiel, M. 2016. Float and raft: role of buoyant seaweeds in the phylogeography and genetic structure of non-buoyant associated flora. In Hu, Z. M. & Fraser, C. I. (Eds.) Seaweed Phylogeography: Adaptation and Evolution of Seaweeds under Environmental Change. Springer, Dordrecht, pp. 97-130.
  22. Maso, M., Garces, E., Pages, F. & Camp, J. 2003. Drifting plastic debris as a potential vector for dispersing harmful algal bloom (HAB) species. Sci. Mar. 67:107-111. https://doi.org/10.3989/scimar.2003.67n1107
  23. Pang, S. J., Liu, F., Shan, T. F., Gao, S. Q. & Zhang, Z. H. 2009. Cultivation of the brown alga Sargassum horneri: sexual reproduction and seedling production in tank culture under reduced solar irradiance in ambient temperature. J. Appl. Phycol. 21:413-422. https://doi.org/10.1007/s10811-008-9386-5
  24. Park, J.-E., Kim, S.-Y., Choi, B.-J. & Byun, D.-S. 2019. Estimation of mean surface current and current variability in the East Sea using surface drifter data from 1991 to 2017. The Sea 24:208-225. https://doi.org/10.7850/JKSO.2019.24.2.208
  25. Qi, L., Hu, C., Wang, M., Shang, S. & Wilson, C. 2017. Floating algae blooms in the East China Sea. Geophys. Res. Lett. 44:11501-11509. https://doi.org/10.1002/2017GL075525
  26. Rothausler, E., Reinwald, H., Lopez, B. A., Tala, F. & Thiel, M. 2018. High acclimation potential in floating Macrocystis pyrifera to abiotic conditions even under grazing pressure:a field study. J. Phycol. 54:368-379. https://doi.org/10.1111/jpy.12643
  27. Schreiber, U., Bilger, W. & Neubauer, C. 1994. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In Schulze, E. D. & Caldwell, M. M. (Eds.) Ecophysiology of Photosynthesis. Springer-Verlag, Berlin, pp. 49-70.
  28. Stiger, V., Horiguchi, T., Yoshida, T., Coleman, A. W. & Masuda, M. 2003. Phylogenetic relationships within the genus Sargassum (Fucales, Phaeophyceae), inferred from ITS-2 nrDNA, with an emphasis on the taxonomic subdivision of the genus. Phycological Res. 51:1-10. https://doi.org/10.1111/j.1440-1835.2003.tb00164.x
  29. Stoner, A. W. & Greening, H. S. 1984. Geographic variation in the macrofaunal associates of pelagic Sargassum and some biogeographic implications. Mar. Ecol. Prog. Ser. 20:185-192. https://doi.org/10.3354/meps020185
  30. Strong, J. A., Dring, M. J. & Maggs, C. A. 2006. Colonisation and modification of soft substratum habitats by the invasive macroalga Sargassum muticum. Mar. Ecol. Prog. Ser. 321:87-97. https://doi.org/10.3354/meps321087
  31. Sun, J., Zhuang, D., Sun, Q. & Pang, S. 2009. Artificial cultivation trials of Sargassum horneri at Nanji islands of China. South China Fish. Sci. 5:41-46.
  32. Tala, F., Lopez, B. A., Velasquez, M., Jeldres, R., Macaya, E. C., Mansilla, A., Ojeda, J. & Thiel, M. 2019. Long-term persistence of the floating bull kelp Durvillaea antarctica from the South-East Pacific: potential contribution to local and transoceanic connectivity. Mar. Environ. Res.149:67-79. https://doi.org/10.1016/j.marenvres.2019.05.013
  33. Thiel, M. & Fraser, C. 2016. The role of floating plants in dispersal of biota across habitats and ecosystems. In Olafsson, E. (Ed.) Marine Macrophytes as Foundation Species. CRC Press, Boca Raton, FL, pp. 76-99.
  34. Thiel, M. & Gutow, L. 2005a. The ecology of rafting in the marine environment. I. The floating substrata. Oceanogr. Mar. Biol. 42:181-264.
  35. Thiel, M. & Gutow, L. 2005b. The ecology of rafting in the marine environment. II. The rafting organisms and community. Oceanogr. Mar. Biol. 43:279-418.
  36. Uchida, T. 1993. The life cycle of Sargassum horneri (Phaeophyta) in laboratory culture. J. Phycol. 29:231-235. https://doi.org/10.1111/j.0022-3646.1993.00231.x
  37. Vandendriessche, S., Vincx, M. & Degraer, S. 2007. Floating seaweed and the influences of temperature, grazing and clump size on raft longevity: a microcosm study. J. Exp. Mar. Biol. Ecol. 343:64-73. https://doi.org/10.1016/j.jembe.2006.11.010
  38. Wallentinus, I. 2002. Introduced marine algae and vascular plants in European aquatic environments. In Leppakoski, E., Gollasch, S. & Olenin, S. (Eds.) Invasive Aquatic Species of Europe: Distribution, Impacts and Management. Springer, Dordrecht, pp. 27-52.
  39. Watanabe, K., Homma, Y., Karakisawa, H., Ishikawa, R. & Uwai, S. 2019. Haplotypic differentiation between seasonal populations of Sargassum horneri (Fucales, Phaeophyceae) in Japan. Phycological Res. 67:59-64. https://doi.org/10.1111/pre.12355
  40. Wichmann, C.-S., Hinojosa, I. A. & Thiel, M. 2012. Floating kelps in Patagonian fjords: an important vehicle for rafting invertebrates and its relevance for biogeography. Mar. Biol. 159:2035-2049. https://doi.org/10.1007/s00227-012-1990-x
  41. Yoshida, T. 1983. Japanese species of Sargassum subgenus Bactrophycus (Phaeophyta, Fucales). J. Fac. Sci. Hokkaido Univ. Ser. V (Bot.) 13:99-246.
  42. Zettler, E. R., Mincer, T. J. & Amaral-Zettler, L. A. 2013. Life in the "Plastisphere": microbial communities on plastic marine debris. Environ. Sci. Technol. 47:7137-7146. https://doi.org/10.1021/es401288x
  43. Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. 2014. PEAR:a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30:614-620. https://doi.org/10.1093/bioinformatics/btt593

Cited by

  1. Distribution of Potentially Toxic Epiphytic Dinoflagellates in Saint Martin Island (Caribbean Sea, Lesser Antilles) vol.41, pp.7, 2019, https://doi.org/10.5252/cryptogamie-algologie2020v41a7
  2. Artificial seed production and cultivation of Sargassum macrocarpum (Fucales, Phaeophyta) vol.35, pp.2, 2019, https://doi.org/10.4490/algae.2020.35.5.27
  3. An assessment of the taxonomic reliability of DNA barcode sequences in publicly available databases vol.35, pp.3, 2019, https://doi.org/10.4490/algae.2020.35.9.4
  4. Sargassum Differentially Shapes the Microbiota Composition and Diversity at Coastal Tide Sites and Inland Storage Sites on Caribbean Islands vol.12, 2019, https://doi.org/10.3389/fmicb.2021.701155
  5. Effects of Sargassum horneri and Ulva australis Extracts on Body Weight and Serum Glucose Levels of Sprague-Dawley Rats vol.26, pp.3, 2019, https://doi.org/10.3746/pnf.2021.26.3.307
  6. Evidence for self-sustaining populations of Arcuatula senhousia in the UK and a review of this species’ potential impacts within Europe vol.11, pp.1, 2019, https://doi.org/10.1038/s41598-021-86876-x
  7. Performance of a Potentially Invasive Species of Ornamental Seaweed Caulerpa sertularioides in Acidifying and Warming Oceans vol.9, pp.12, 2021, https://doi.org/10.3390/jmse9121368