• 제목/요약/키워드: Korea Strait

검색결과 341건 처리시간 0.025초

국제학술지, 지도, 문서에 나타난 대한해협 해양지명과 경계에 대한 인식 변화 (The Maritime Geography of Korea Strait: Suggested Nomenclature and Cartographic Boundaries Derived from a Review of Historical and Contemporary Maps)

  • 변도성;최병주
    • 한국해양학회지:바다
    • /
    • 제28권2호
    • /
    • pp.63-93
    • /
    • 2023
  • 이 연구는 황·동중국해와 동해 울릉분지 사이에 위치한 수로를 대한해협(Korea Strait)으로 명명한 역사적 사실을 바탕으로 향후 국내 연구자들이 활용할 수 있는 일관된 명명법과 지리적 영역을 제시하였다. 국제적으로 대한해협으로 알려진 이 수역은 일상에서 보통 남해로 불리지만, 역사적 근거에 기초하여 대한해협으로 불리는 것이 바람직하다. 이러한 권장안 사용을 뒷받침하기 위해, 먼저 우리나라 주변해역에 대한 고지도, 고해도, IHO 특별간행물(S-23) 등을 분석하여 과거 대한해협의 공간범위를 정의하였고, 대한해협과 대한해협 내 서수도·동수도 지명들의 변천 과정을 조사하였다. 이를 바탕으로 지난 17년(2005-2021년) 간 Ocean Science Journal (OSJ)과 Journal of Oceanography (JO)에 실린 논문들 중 지도에 Korea Strait 또는 관련 지명(South Sea, Korea/Tsushima Straits, Tsushima Strait)을 표기한 논문들을 분석하여 연구자들의 대한해협 지명 표기와 그 공간적 위치에 대한 인식을 조사하였다. OSJ의 경우에 42.9%가 'Korea Strait'를 표기한 반면에 JO의 경우 60.4%가 'Tsushima Strait'를 표기하였다. 하지만, OSJ에는 'Tsushima Strait'를 단독으로 표기한 논문이 한 편도 없었으나, JO에는 7.5%가 'Korea Strait'를 단독으로 표기하였다. 두 국제학술지에서 실린 'Korea Strait' 지명 표기 위치는 크게 5가지 형태로 분류되었다. 즉, 각 논문에서는 대한해협을 광의의 대한해협 영역(Type 1), 울릉분지와 대마도 사이(Type 2), 대한해협 내 서수도(Type 3-1), 대한해협 내 동수도(Type 3-2), 대한해협 내 서·동수도(Type 4)에 표기하고 있었다. 이 중 Type 1이 OSJ의 경우 71.4%를, JO의 경우 60.4%를 차지하여, 광의의 대한해협 영역에 가장 빈번하게 이 해협의 이름을 표기하고 있었다. 끝으로 현재 대한해협을 흐르는 해류의 명칭이 국제적으로 '대한난류'가 아닌 '대마난류' 즉 대한해협 지명에서 비롯하지 않은 명칭이라는 사실에 관해 논의하였다.

제주해협 통항문제에 관한 법적 고찰 (Legal Approach to the Passage Issues of the Cheju Strait)

  • 김현수
    • 해양환경안전학회:학술대회논문집
    • /
    • 해양환경안전학회 2003년도 추계학술발표회
    • /
    • pp.35-44
    • /
    • 2003
  • 본 연구는 제주해협의 통항문제를 유엔해양법협약을 기초로 검토하여 제주해협의 국제법상 지위 및 이에 상응하는 통항제도를 구체적으로 제시하고자 한다. 이를 위하여 제주해협의 지리적 특성, 유엔해양법협약상의 통항제도, 제주해협의 통항문제 및 북한상선의 제주해협문제 등을 고찰한다.

  • PDF

대한해협 저층해류의 관측 (Observations of Bottom Currents in the Korea Strait)

  • 이재철;김대현
    • 한국수산과학회지
    • /
    • 제49권3호
    • /
    • pp.393-403
    • /
    • 2016
  • A steady, strong southward flow was observed in the lower layer beneath the Tsushima Warm Current in the deepest trough of the Korea Strait. Known as the Korea Strait Bottom Cold Water (KSBCW), this bottom current had a mean velocity of 24 cm/s and temperatures below 8–10℃. The direction of the bottom current was highly stable due to the topographic effects of the elongated trough. To determine the path of the southward bottom current, ADCP (Acoustic Doppler Current Profiler) data from 14 stations between 1999 and 2005 were examined. Persistent southward flows with average speeds of 4–10 cm/s were observed at only three places to the north of the strait where the bottom depths were 100–124 m. The collected data suggest a possible course of the southward bottom current along the southeast Korean coast before entering the deep trough of the Strait.

SINGAPORE STRAIT TRANSITION NIGHT SIGNAL 실무적용 사례 소개 (Design and Method of SINGAPORE STRAIT TRANSITION NIGHT SIGNAL)

  • 박시한
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2013년도 특별논문집
    • /
    • pp.47-49
    • /
    • 2013
  • According to the new Singapore Authority Rule(Sn.1/Cir293) which has taken effect from $1^{st}$ July, 2011 at 000hrs, all vessel crossing the Traffic Separation Scheme(TSS) and precautionary areas in Singapore Strait are recommended to display the night signals consisting of 3 all-around green lights in a vertical line. So, this paper presents methods for design of SINGAPORE STRAIT TRANSITION NIGHT SIGNAL.

  • PDF

Sea Level Response in the Korea Strait to Typhoons

  • Hong, Chul-Hoon
    • Journal of the korean society of oceanography
    • /
    • 제31권3호
    • /
    • pp.107-116
    • /
    • 1996
  • A shallow water numerical model is established to investigate the response of coastal water in the Korea Strait to typhoons that pass nearby the Korea Strait. Atmospheric pressure and wind by Fujita's formula (1952) and Miyazaki et al. (1961), respectively are used in the model. The model results show an agreement fair with the observation partially, but poor with the amplitude of the sea level variation. In particular, the discrepancy is larger in a typhoon passing through right side than that through left side of the Korea Strait. The model showes that the disagreement between the model and the observation can be caused by numerically unrealistic distributions of armospheric pressure and wind around the strait. In the Korea Strait the isostatic effects in the model were underestimated, whereas the wind fields were overestimated.

  • PDF

A Relationship between the Sea Level Variations in the Korea Strait and the Tokara Strait in the Kuroshio region

  • Hong Chul-Hoon
    • Fisheries and Aquatic Sciences
    • /
    • 제1권1호
    • /
    • pp.113-121
    • /
    • 1998
  • A relationship between sea level variations in the Korea Strait (the western and the eastern channels) and the Tokara Strait in the Kuroshio region is examined using daily-mean sea level data from 1966 to 1986. The seasonal variation of the sea level difference (SLD) between Izuhara and Pusan (the western channel) is most periodic: the positive anomalies appear from summer to autumn, and the negative anomalies from winter to spring year to year, whereas SLDs neither between Hakata and Izuhara (the eastern channel) nor between Naze and Nishinoomote (the Tokara Strait) show such a periodic variation. Much similarity has been found between SLDs in the eastern channel and the Tokara Strait, and in particular they were closely correlated in a special event of the Kuroshio region, such as a large meander of the Kuroshio. This paper shows that the periodic seasonal variation of the SLDs in the western channel should be less related to the Kuroshio region. This result also implies that the variation of SLD in the western channel is largely influenced by local factors, such as the bottom cold water in the western channel in summer, rather than from the Kuroshio region.

  • PDF

Hydraulics of a two-layer rotating flow; Application to the Korea Strait

  • Cho, Yang-Ki;Kim, Kuh
    • 한국해안해양공학회:학술대회논문집
    • /
    • 한국해안해양공학회 1995년도 정기학술강연회 발표논문 초록집
    • /
    • pp.9-12
    • /
    • 1995
  • The Korea Strait becomes deeper than 200 m from south to north in general except coastal area, whereas its southern part is shallower than 125 m except for a deep trough (Fig.1). The flow in the Korea Strait could be simplified as two layers (Isobe, 1995); the Tsushima Warm Water in the upper layer and the Korea Strait Bottom Cold Water (KSBCW) in the lower layer (Fig.2). (omitted)

  • PDF

1995년 6월 초순 제주해협과 대한해협 입구 해역에서의 해황 분석 (Analysis of Oceanographic Condition in the Cheju Strait, the Korea Strait and the Mixed water area Between the two Regions in Early June in 1995)

  • 최영찬
    • 한국수산과학회지
    • /
    • 제31권2호
    • /
    • pp.296-301
    • /
    • 1998
  • 제주북방 남해안인 제주해협과, 동쪽인 대한해협 입구 해역, 그리고 이들 해협수가 혼합되어지는 해역에 대하여 1995년 5월 30일부터 6월 8일까지 해수의 물리 화학적 특성을 규명하기 위하여 조사하였다. 1) 한 정점에서 24시간 관측에 의한 수심별 수온과 염분의 변동폭은 표층에서 $1.8^{\circ}C,\;0.7\%_{\circ}$의 최대 변동폭을 보이고 있으며, 이러한 변동폭은 30m에서 $0.5^{\circ}C,\;0.5\%_{\circ}$로 낮아지고 있다. 그러나 70m 이심층에서는 변화 폭이 아주 미미하여 주야간 변동은 표층에서 30m층까지 나타난다고 할 수 있다. 2) 영양염류의 24시간 변동폭은 총 무기질소, 인산인, 규산규소 등이 주간보다는 야간에서의 농도가 높은 특징 을 보이고 있다. 3) 해역별 수온과 염분은 대마난류의 직접 영향원인 대한 해협입구해역이 가장 높았으며, 제주북방 제주해협이 가장 낮았다. 또한 두 수괴가 혼합되어지는 대한해협은 표층 수는 대한 해협입구 해역수의 영향을, 저층수는 제주해협 저층으로부터 영향을 많이 받고 있음을 알 수 있다. 4) 영양염류의 해역별 특성은 제주해협수와 대한 해협입구해역수가 만나 혼합되어지는 대한해협에서 가장 높게 나타나고 있는데, 이는 용존산소가 가장 낮게 나타나고 있는 것으로 보아 유기물 분해에 의한 영양염 무기화에 따른 산소소모와 영양염 용출에 의한 영향으로 판단된다.

  • PDF

대한해협주변 내부조석의 계절적 변동성: 3차원 고해상도 모델 연구 (Seasonal Variability of Internal Tides around the Korea Strait: 3-D High-resolution Model Simulation)

  • 이현정;이호진;박재훈;하호경
    • Ocean and Polar Research
    • /
    • 제36권1호
    • /
    • pp.1-12
    • /
    • 2014
  • This study investigates spatial and temporal variations in the generation and propagation of internal tides around the Korea Strait using a three-dimensional high resolution model (Regional Ocean Modeling System; ROMS). The model results were verified through comparison with in-situ current measurements from an array of 12 acoustic Doppler current profilers (ADCPs) deployed in the Korea Strait. Fluxes and distributions of internal tidal energy were calculated using simulation results gathered in February and August. Our analyses reveal that energetic semidiurnal internal tides are generated in a region around the Korea Strait shelf break ($35.5^{\circ}N$, $130^{\circ}{\sim}130.5^{\circ}E$), where the strong cross-slope semidiurnal barotropic tidal currents interact with a sudden topographical change. The semidiurnal internal tidal energy generated in summer displays values about twice as large as values in winter. Propagation of semidiurnal internal tides also reveals seasonal variability. In February, most of the semidiurnal internal tides propagate only into the open basin of the East Sea due to weak stratification in the Korea Strait, which inhibits their southwestward propagation. In August, they propagate southwestward to $35.2^{\circ}N$ along the western channel of the Korea Strait because of strong stratification. In addition, semidiurnal internal tides generated in a region west of Tsushima Island are found to propagate to the coast of Busan. This can be explained by the intensified stratification due to the strong intrusion of bottom cold water in the western channel of the Korea Strait during summer.

Downward particle flux in the eastern Bransfield Strait, Antarctica

  • Kim, Dongseon;Kim, Dong-Yup;Jeonghee Shim;Kang, Young-Chul;Kim, Taerim
    • Journal of the korean society of oceanography
    • /
    • 제38권1호
    • /
    • pp.1-10
    • /
    • 2003
  • A time-series sediment trap was deployed at a depth of 1034 m in the eastern Bransfield Strait from December 25, 1998 to December 24, 1999. Particle fluxes showed large seasonal variation; about 99% of the annual total mass flux (49 g m/sup -2/) was collected during the austral summer and fall (January-March). Settling particles consisted primarily of biogenic silica, organic carbon, calcium carbonate, and lithogenic material. Biogenic silica and lithogenic material predominated settling particles, comprising 36% and 30% of the total mass flux, respectively, followed by organic carbon, 11% and calcium carbonate, merely 0.6%. The annual organic carbon flux was 5.4 g C m/sup -2/ at 1000 m in the eastern Bransfield Strait, which is greater than the central Strait flux. The relatively lower flux of organic carbon in the central Bransfield Strait may be caused by a stronger surface current in this region. Organic carbon flux estimates in the eastern Bransfield Strait are the highest in the Southern Ocean, perhaps because of the fast sinking of fecal pellets, which leads to less decomposition of organic material in the water column. Approximately 5.8% of the organic carbon produced on the surface in the eastern Bransfield Strait is exported down to 1000 m; this percentage exceeds the maximum EF/sub 1000/ values observed in the Atlantic and Southern Oceans. The eastern Bransfield Strait appears to be the most important site of organic carbon export to the deep sea in the Southern Ocean.