DOI QR코드

DOI QR Code

Five Alexandrium species lacking mixotrophic ability

  • Lim, An Suk (Research Institute of Oceanography, Seoul National University) ;
  • Jeong, Hae Jin (Research Institute of Oceanography, Seoul National University) ;
  • Ok, Jin Hee (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
  • Received : 2019.10.10
  • Accepted : 2019.11.21
  • Published : 2019.12.15

Abstract

Mixotrophy in marine organisms is an important aspect of ecology and evolution. The discovery of mixotrophic abilities in phototrophic dinoflagellates alters our understanding of the dynamics of red tides. In the phototrophic dinoflagellate genus Alexandrium, some species are mixotrophic, but others are exclusively autotrophic. There are differences in the ecological roles of autotrophic and mixotrophic Alexandrium in marine food webs. However, of the 34 known Alexandrium species, the mixotrophic ability of >20 species has yet to be explored. In this study, the mixotrophic capabilities of Alexandrium insuetum CCMP2082, Alexandrium mediterraneum CCMP3433, Alexandrium pacificum CCMP3434, Alexandrium tamutum ATSH1609, and Alexandrium margalefii CAWD10 were investigated by providing each species with 22 diverse prey items including bacterium-sized microbeads (1 ㎛), the cyanobacterium Synechococcus sp., algal prey species, and the ciliate Mesodinium rubrum. None of the 5 Alexandrium species fed on any of the prey items. These results increase the number of Alexandrium species lacking mixotrophic abilities to 9, compared to the 7 known mixotrophic Alexandrium species. Furthermore, the Alexandrium phylogenetic tree based on the large subunit ribosomal DNA contained 3 large clades, each of which had species with and without mixotrophic abilities. Thus, the acquisition or loss of mixotrophic abilities in Alexandrium might readily occur.

Keywords

References

  1. Anderson, D. M., Alpermann, T. J., Cembella, A. D., Collos, Y., Masseret, E. & Montresor, M. 2012. The globally distributed genus Alexandrium: multifaceted roles in marine ecosystems and impacts on human health. Harmful Algae 14:10-35. https://doi.org/10.1016/j.hal.2011.10.012
  2. Arzul, G., Seguel, M., Guzman, L. & Erard-Le Denn, E. 1999. Comparison of allelopathic properties in three toxic Alexandrium species. J. Exp. Mar. Biol. Ecol. 232:285-295. https://doi.org/10.1016/S0022-0981(98)00120-8
  3. Berge, T., Hansen, P. J. & Moestrup, O. 2008. Feeding mechanism, prey specificity and growth in light and dark of the plastidic dinoflagellate Karlodinium armiger. Aquat. Microb. Ecol. 50:279-288. https://doi.org/10.3354/ame01165
  4. Blossom, H. E., Bædkel, T. D., Tillmann, U. & Hansen, P. J. 2017. A search for mixotrophy and mucus trap production in Alexandrium spp. and the dynamics of mucus trap formation in Alexandrium pseudogonyaulax. Harmful Algae 64:51-62. https://doi.org/10.1016/j.hal.2017.03.004
  5. Blossom, H. E., Daugbjerg, N. & Hansen, P. J. 2012. Toxic mucus traps: a novel mechanism that mediates prey uptake in the mixotrophic dinoflagellate Alexandrium pseudogonyaulax. Harmful Algae 17:40-53. https://doi.org/10.1016/j.hal.2012.02.010
  6. Bockstahler, K. R. & Coats, D. W. 1993. Grazing of the mixotrophic dinoflagellate Gymnodinium sanguineum on ciliate populations of Chesapeake Bay. Mar. Biol. 116:447-487.
  7. Burkholder, J. M., Glibert, P. M. & Skelton, H. M. 2008. Mixotrophy, a major mode of nutrition for harmful algal species in eutrophic waters. Harmful Algae 8:77-93. https://doi.org/10.1016/j.hal.2008.08.010
  8. Cembella, A. D., Lewis, N. I. & Quilliam, M. A. 2000. The marine dinoflagellate Alexandrium ostenfeldii (Dinophyceae) as the causative organism of spirolide shellfish toxins. Phycologia 39:67-74. https://doi.org/10.2216/i0031-8884-39-1-67.1
  9. Cembella, A. D., Quilliam, M. A., Lewis, N. I., Bauder, A. G., Dell'Aversano, C., Thomas, K., Jellett, J. & Cusack, R. R. 2002. The toxigenic marine dinoflagellate Alexandrium tamarense as the probable cause of mortality of caged salmon in Nova Scotia. Harmful Algae 1:313-325. https://doi.org/10.1016/S1568-9883(02)00048-3
  10. Daugbjerg, N., Hansen, G., Larsen, J. & Moestrup, O. 2000. Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates. Phycologia 39:302-317. https://doi.org/10.2216/i0031-8884-39-4-302.1
  11. Davidson, K., Anderson, D. M., Mateus, M., Reguera, B., Silke, J., Sourisseau, M. & Maguire, J. 2016. Forecasting the risk of harmful algal blooms. Harmful Algae 53:1-7. https://doi.org/10.1016/j.hal.2015.11.005
  12. Falkowski, P. G., Katz, M. E., Knoll, A. H., Quigg, A., Raven, J. A., Schofield, O. & Taylor, F. J. R. 2004. The evolution of modern eukaryotic phytoplankton. Science 305:354-360. https://doi.org/10.1126/science.1095964
  13. Faure, E., Not, F., Benoiston, A.-S., Labadie, K., Bittner, L. & Ayata, S.-D. 2019. Mixotrophic protists display contrasted biogeographies in the global ocean. ISME J. 1:1072-1083.
  14. Flynn, K. J., Mitra, A., Glibert, P. M. & Burkholder, J. M. 2018. Mixotrophy in HABs: by whom, on whom, when, why, and what next. In Glibert, P. M., Berdalet, E., Burford, M. A., Picher, G. C. & Zhou, M. (Eds.) Global Ecology and Oceanography of Harmful Algal Blooms. Springer, Cham, pp. 113-132.
  15. Fraga, S., Gallager, S. M. & Anderson, D. M. 1989. Chainforming dinoflagellates: an adaptation to red tides. In Okaichi, T., Anderson, D. M. & Nemoto, T. (Eds.) Red Tides: Biology, Environmental Science and Toxicology. Elsevier, New York, pp. 281-284.
  16. Garces, E., Delgado, M., Maso, M. & Camp, J. 1998. Life history and in situ growth rates of Alexandrium taylori (Dinophyceae, Pyrrophyta). J. Phycol. 34:880-887. https://doi.org/10.1046/j.1529-8817.1998.340880.x
  17. Glibert, P. M., Berdalet, E., Burford, M. A., Pitcher, G. C. & Zhou, M. 2018. Global ecology and oceanography of harmful algal blooms. Vol. 232. Springer, Cham, 461 pp.
  18. Gomez, F. 2012. A quantitative review of the lifestyle, habitat and trophic diversity of dinoflagellates (Dinoflagellata, Alveolata). Syst. Biodivers. 10:267-275. https://doi.org/10.1080/14772000.2012.721021
  19. Grattan, L. M., Holobaugh, S. & Morris, J. G. Jr. 2016. Harmful algal blooms and public health. Harmful Algae 57:2-8. https://doi.org/10.1016/j.hal.2016.05.003
  20. Guillard, R. R. L. & Ryther, J. H. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8:229-239. https://doi.org/10.1139/m62-029
  21. Guiry, M. D. & Guiry, G. M. 2019. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available from: http://www.algaebase.org. Accessed Oct 12, 2019.
  22. Hallegraeff, G. M. 1995. Harmful algal blooms: a global overview. In Hallegraeff, G. M., Anderson, D. M. & Cembella, A. D. (Eds.) Manual on Harmful Marine Microalgae. UNESCO, Paris, pp. 1-22.
  23. Hansen, P. J. 2011. The role of photosynthesis and food uptake for the growth of marine mixotrophic dinoflagellates. J. Eukaryot. Microbiol. 58:203-214. https://doi.org/10.1111/j.1550-7408.2011.00537.x
  24. Huelsenbeck, J. P. & Ronquist, F. 2001. MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754-755. https://doi.org/10.1093/bioinformatics/17.8.754
  25. Jacobson, D. M. & Anderson, D. M. 1996. Widespread phagocytosis of ciliates and other protists by marine mixotrophic and heterotrophic thecate dinoflagellates. J. Phycol. 32:279-285. https://doi.org/10.1111/j.0022-3646.1996.00279.x
  26. Jang, S. H., Jeong, H. J., Kwon, J. E. & Lee, K. H. 2017. Mixotrophy in the newly described dinoflagellate Yihiella yeosuensis:a small, fast dinoflagellate predator that grows mixotrophically, but not autotrophically. Harmful Algae 62:94-103. https://doi.org/10.1016/j.hal.2016.12.007
  27. Jeong, H. J., Lee, C. W., Yih, W. H. & Kim, J. S. 1997. Fragilidium cf. mexicanum, a thecate mixotrophic dinoflagellate which is prey for and a predator on co-occuring thecate heterotrophic dinoflagellate Protoperidinium cf. divergens. Mar. Ecol. Prog. Ser. 151:299-305. https://doi.org/10.3354/meps151299
  28. Jeong, H. J., Lim, A. S., Franks, P. J. S., Lee, K. H., Kim, J. H., Kang, N. S., Lee, M. J., Jang, S. H., Lee, S. Y., Yoon, E. Y., Park, J. Y., Yoo, Y. D., Seong, K. A., Kwon, J. E. & Jang, T. Y. 2015. A hierarchy of conceptual models of red-tide generation: nutrition, behavior, and biological interactions. Harmful Algae 47:97-115. https://doi.org/10.1016/j.hal.2015.06.004
  29. Jeong, H. J., Lim, A. S., Lee, K., Lee, M. J., Seong, K. A., Kang, N. S., Jang, S. H., Lee, K. H., Lee, S. Y., Kim, M. O., Kim, J. H., Kwon, J. E., Kang, H. C., Kim, J. S., Yih, W., Shin, K., Jang, P. K., Ryu, J.-H., Kim, S. Y., Park, J. Y. & Kim, K. Y. 2017. Ichthyotoxic Cochlodinium polykrikoides red tides offshore in the South Sea, Korea in 2014: I. poral variations in three-dimensional distributions of red-tide organisms and environmental factors. Algae 32:101-130. https://doi.org/10.4490/algae.2017.32.5.30
  30. Jeong, H. J., Ok, J. H., Lim, A. S., Kwon, J. E., Kim, S. J. & Lee, S. Y. 2016. Mixotrophy in the phototrophic dinoflagellate Takayama helix (family Kareniaceae): predator of diverse toxic and harmful dinoflagellates. Harmful Algae 60:92-106. https://doi.org/10.1016/j.hal.2016.10.008
  31. Jeong, H. J., Park, J. Y., Nho, J. H., Park, M. O., Ha, J. H., Seong, K. A., Jeng, C., Seong, C. N., Lee, K. Y. & Yih, W. H. 2005a. Feeding by the red-tide dinoflagellates on the cyanobacterium Synechococcus. Aquat. Microb. Ecol. 41:131-143. https://doi.org/10.3354/ame041131
  32. Jeong, H. J., Yoo, Y. D., Kang, N. S., Lim, A. S., Seong, K. A., Lee, S. Y., Lee, M. J., Lee, K. H., Kim, H. S., Shin, W., Nam, S. W., Yih, W. & Lee, K. 2012. Heterotrophic feeding as a newly identified survival strategy of the dinoflagellate Symbiodinium. Proc. Natl. Acad. Sci. U. S. A. 109:12604-12609. https://doi.org/10.1073/pnas.1204302109
  33. Jeong, H. J., Yoo, Y. D., Kim, J. S., Kim, T. H., Kim, J. H., Kang, N. S. & Yih, W. 2004. Mixotrophy in the phototrophic harmful alga Cochlodinium polykrikoides (Dinophycean):prey species, the effects of prey concentration and grazing impact. J. Eukaryot. Microbiol. 51:563-569. https://doi.org/10.1111/j.1550-7408.2004.tb00292.x
  34. Jeong, H. J., Yoo, Y. D., Kim, J. S., Seong, K. A., Kang, N. S. & Kim, T. H. 2010. Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. J. 45:65-91. https://doi.org/10.1007/s12601-010-0007-2
  35. Jeong, H. J., Yoo, Y. D., Kim, T. H., Seong, K. A., Kang, N. S., Lee, K. H., Lee, S. Y., Kim, J. S., Kim, S. & Yih, W. H. 2013. Red tides in Masan Bay, Korea in 2004-2005: I. Daily variations in the abundance of red-tide organisms and environmental factors. Harmful Algae 30(Suppl. 1):S75-S88. https://doi.org/10.1016/j.hal.2013.10.008
  36. Jeong, H. J., Yoo, Y. D., Park, J. Y., Song, J. Y., Kim, S. T., Lee, S. H., Kim, K. Y. & Yih, W. H. 2005b. Feeding by the phototrophic red-tide dinoflagellates: five species newly revealed and six species previously known to be mixotrophic. Aquat. Microb. Ecol. 40:133-150. https://doi.org/10.3354/ame040133
  37. Johnson, M. D. 2011. The acquisition of phototrophy: adaptive strategies of hosting endosymbionts and organelles. Photosynth. Res. 107:117-132. https://doi.org/10.1007/s11120-010-9546-8
  38. Jones, R. I. 2000. Mixotrophy in planktonic protists: an overview. Freshw. Biol. 45:219-226. https://doi.org/10.1046/j.1365-2427.2000.00672.x
  39. Kang, H. C., Jeong, H. J., Kim, S. J., You, J. H. & Ok, J. H. 2018. Differential feeding by common heterotrophic protists on 12 different Alexandrium species. Harmful Algae 78:106-117. https://doi.org/10.1016/j.hal.2018.08.005
  40. Kang, N. S., Jeong, H. J., Moestrup, O., Shin, W., Nam, S. W., Park, J. Y., de Salas, M. F., Kim, K. W. & Noh, J. H. 2010. Description of a new planktonic mixotrophic dinoflagellate Paragymnodinium shiwhaense n. gen., n. sp. from the coastal waters off western Korea: morphology, pigments, and ribosomal DNA gene sequence. J. Eukaryot. Microbiol. 57:121-144. https://doi.org/10.1111/j.1550-7408.2009.00462.x
  41. Karp-Boss, L., Boss, E. & Jumars, P. A. 2000. Motion of dinoflagellates in a simple shear flow. Limnol. Oceanogr. 45:1594-1602. https://doi.org/10.4319/lo.2000.45.7.1594
  42. Kita, T. & Fukuyo, Y. 1988. Description of the gonyaulacoid dinoflagellate Alexandrium hiranoi sp. nov. inhibiting tidepools on Japanese Pacific coast. Bull. Plankton Soc. Jpn. 35:1-7.
  43. Landsberg, J. H. 2002. The effects of harmful algal blooms on aquatic organisms. Rev. Fish. Sci. 10:113-390. https://doi.org/10.1080/20026491051695
  44. Lee, K. H., Jeong, H. J., Jang, T. Y., Lim, A. S., Kang, N. S., Kim, J.-H., Kim, K. Y., Park, K.-T. & Lee, K. 2014. Feeding by the newly described mixotrophic dinoflagellate Gymnodinium smaydae: feeding mechanism, prey species, and effect of prey concentration. J. Exp. Mar. Biol. Ecol. 459:114-125. https://doi.org/10.1016/j.jembe.2014.05.011
  45. Lee, K. H., Jeong, H. J., Kwon, J. E., Kang, H. C., Kim, J. H., Jang, S. H., Park, J. Y., Yoon, E. Y. & Kim, J. S. 2016. Mixotrophic ability of the phototrophic dinoflagellates Alexandrium andersonii, A. affine, and A. fraterculus. Harmful Algae 59:67-81. https://doi.org/10.1016/j.hal.2016.09.008
  46. Leles, S. G., Mitra, A., Flynn, K. J., Tillmann, T., Stoecker, D., Jeong, H. J., Burkholder, J., Hansen, P. J., Caron, D. A., Glibert, P. M., Hallegraeff, G., Raven, J. A., Sanders, R. W. & Zubkov, M. 2019. Sampling bias misrepresents the biogeographic significance of constitutive mixotrophs across global oceans. Glob. Ecol. Biogeogr. 28:418-428. https://doi.org/10.1111/geb.12853
  47. Lewis, N. I., Xu, W., Jericho, S. K., Kreuzer, H. J., Jericho, M. H. & Cembella, A. D. 2006. Swimming speed of three species of Alexandrium (Dinophyceae) as determined by digital in-line holography. Phycologia 45:61-70. https://doi.org/10.2216/04-59.1
  48. Lim, A. S., Jeong, H. J., Kim, J. H., Jang, S. H., Lee, M. J. & Lee, K. 2015. Mixotrophy in the newly described dinoflagellate Alexandrium pohangense: a specialist for feeding on the fast-swimming ichthyotoxic dinoflagellate Cochlodinium polykrikoides. Harmful Algae 49:10-18. https://doi.org/10.1016/j.hal.2015.07.010
  49. Lim, A. S., Jeong, H. J., Kim, J. H., Jang, S. H., Lee, M. J. & Lee, K. 2015. Mixotrophy in the newly described dinoflagellate Alexandrium pohangense: a specialist for feeding on the fast-swimming ichthyotoxic dinoflagellate Cochlodinium polykrikoides. Harmful Algae 49:10-18. https://doi.org/10.1016/j.hal.2015.07.010
  50. Lim, A. S., Jeong, H. J., Seong, K. A., Lee, M. J., Kang, N. S., Jang, S. H., Lee, K. H., Park, J. Y., Jang, T. Y. & Yoo, Y. D. 2017. Ichthyotoxic Cochlodinium polykrikoides red tides offshore in South Sea, Korea in 2014: II. Heterotrophic protists and their grazing impacts on red-tide organisms. Algae 32:199-222. https://doi.org/10.4490/algae.2017.32.8.25
  51. Litaker, R. W., Vandersea, M. W., Kibler, S. R., Reece, K. S., Stokes, N. A., Steidinger, K. A., Millie, D. F., Bendis, B. J., Pigg, R. J. & Tester, P. A. 2003. Identification of Pfiesteria piscicida (Dinophyceae) and Pfiesteria-like organisms using internal transcribed spacer-specific PCR assays. J. Phycol. 39:754-761. https://doi.org/10.1046/j.1529-8817.2003.02112.x
  52. Mitra, A., Flynn, K. J., Tillmann, U., Raven, J. A., Caron, D., Stoecker, D. K., Not, F., Hansen, P. J., Hallegraeff, G., Sanders, R., Wilken, S., McManus, G., Johnson, M., Pitta, P., Vage, S., Berge, T., Calbet, A., Thingstad, F., Jeong, H. J., Burkholder, J., Glibert, P. M., Graneli, E. & Lundgren, V. 2016. Defining planktonic protist functional groups on mechanisms for energy and nutrient acquisition:incorporation of diverse mixotrophic strategies. Protist 167:106-120. https://doi.org/10.1016/j.protis.2016.01.003
  53. Park, T. G., Lim, W. A., Park, Y. T., Lee, C. K. & Jeong, H. J. 2013. Economic impact, management and mitigation of red tides in Korea. Harmful Algae 30(Suppl. 1):S131-S143. https://doi.org/10.1016/j.hal.2013.10.012
  54. Raven, J. A. 1997. Phagotrophy in phototrophs. Limnol. Oceanogr. 42:198-205. https://doi.org/10.4319/lo.1997.42.1.0198
  55. Ronquist, F. & Huelsenbeck, J. P. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572-1574. https://doi.org/10.1093/bioinformatics/btg180
  56. Scholin, C. A., Herzog, M., Sogin, M. & Anderson, D. M. 1994. Identification of group-and strain-specific genetic makers for globally distributed Alexandrium (Dinophyceae). II. Sequence analysis of a fragment of the LSU rRNA gene. J. Phycol. 30:999-1011. https://doi.org/10.1111/j.0022-3646.1994.00999.x
  57. Simon, N., Cras, A.-L., Foulon, E. & Lemee, R. 2009. Diversity and evolution of marine phytoplankton. C. R. Biol. 332:159-170. https://doi.org/10.1016/j.crvi.2008.09.009
  58. Skovgaard, A. & Hansen, P. J. 2003. Food uptake in the harmful alga Prymnesium parvum mediated by excreted toxins. Limnol. Oceanogr. 48:1161-1166. https://doi.org/10.4319/lo.2003.48.3.1161
  59. Stamatakis, A. 2006. RaxML-VI-HPC: maximum likelihoodbased phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688-2690. https://doi.org/10.1093/bioinformatics/btl446
  60. Stoecker, D. K. 1999. Mixotrophy among Dinoflagellates. J. Eukaryot. Microbiol. 46:397-401. https://doi.org/10.1111/j.1550-7408.1999.tb04619.x
  61. Stoecker, D. K., Li, A., Coats, D. W., Gustafson, D. E. & Nannen, M. K. 1997. Mixotrophy in the dinoflagellate Prorocentrum minimum. Mar. Ecol. Prog. Ser. 152:1-12. https://doi.org/10.3354/meps152001
  62. Stoecker, D. K., Hansen, P. J., Caron, D. A. & Mitra, A. 2017. Mixotrophy in the marine plankton. Annu. Rev. Mar. Sci. 9:311-335. https://doi.org/10.1146/annurev-marine-010816-060617
  63. Tamura, K., Dudley, J., Nei, M. & Kumar, S. 2007. MEGA4:molecular evolutionary genetics analysis (MEGA) software v. 4.0. Mol. Biol. Evol. 24:1596-1599. https://doi.org/10.1093/molbev/msm092
  64. Tillmann, U., Alpermann, T., John, U. & Cembella, A. 2008. Allelochemical interactions and short-term effects of the dinoflagellate Alexandrium on selected photoautotrophic and heterotrophic protists. Harmful Algae 7:52-64. https://doi.org/10.1016/j.hal.2007.05.009
  65. Tillmann, U. & John, U. 2002. Toxic effects of Alexandrium spp. on heterotrophic dinoflagellates: an allelochemical defence mechanism independent of PSP-toxin content. Mar. Ecol. Prog. Ser. 230:47-58. https://doi.org/10.3354/meps230047
  66. Tillmann, U., John, U. & Cembella, A. 2007. On the allelochemical potency of the marine dinoflagellate Alexandrium ostenfeldii against heterotrophic and autotrophic protists. J. Plankton Res. 29:527-543. https://doi.org/10.1093/plankt/fbm034
  67. Tillmann, U. & Hansen, P. J. 2009. Allelopathic effects of Alexandrium tamarense on other algae: evidence from mixed growth experiments. Aquat. Microb. Ecol. 57:101-112. https://doi.org/10.3354/ame01329
  68. Ward, B. A. & Follows, M. J. 2016. Marine mixotrophy increases trophic transfer efficiency, mean organism size, and vertical carbon flux. Proc. Natl. Acad. Sci.113:2958-2963. https://doi.org/10.1073/pnas.1517118113
  69. Yoo, Y. D., Jeong, H. J., Kim, M. S., Kang, N. S., Song, J. Y., Shin, W., Kim, K. Y. & Lee, K. T. 2009. Feeding by phototrophic red-tide dinoflagellates on the ubiquitous marine diatom Skeletonema costatum. J. Eukaryot. Microbiol. 56:413-420. https://doi.org/10.1111/j.1550-7408.2009.00421.x

Cited by

  1. Effects of irradiance and temperature on the growth and feeding of the obligate mixotrophic dinoflagellate Gymnodinium smaydae vol.167, pp.5, 2020, https://doi.org/10.1007/s00227-020-3678-y
  2. Spatial-temporal distributions of the newly described mixotrophic dinoflagellate Gymnodinium smaydae in Korean coastal waters vol.35, pp.3, 2020, https://doi.org/10.4490/algae.2020.35.8.25
  3. Semi-continuous cultivation of the mixotrophic dinoflagellate Gymnodinium smaydae, a new promising microalga for omega-3 production vol.35, pp.3, 2019, https://doi.org/10.4490/algae.2020.35.9.2
  4. Unknown Extracellular and Bioactive Metabolites of the Genus Alexandrium: A Review of Overlooked Toxins vol.13, pp.12, 2019, https://doi.org/10.3390/toxins13120905