• Title/Summary/Keyword: trend algorithm

Search Result 438, Processing Time 0.031 seconds

Projecting the spatial-temporal trends of extreme climatology in South Korea based on optimal multi-model ensemble members

  • Mirza Junaid Ahmad;Kyung-sook Choi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.314-314
    • /
    • 2023
  • Extreme climate events can have a large impact on human life by hampering social, environmental, and economic development. Global circulation models (GCMs) are the widely used numerical models to understand the anticipated future climate change. However, different GCMs can project different future climates due to structural differences, varying initial boundary conditions and assumptions about the physical phenomena. The multi-model ensemble (MME) approach can improve the uncertainties associated with the different GCM outcomes. In this study, a comprehensive rating metric was used to select the best-performing GCMs out of 11 CMIP5 and 13 CMIP6 GCMs, according to their skills in terms of four temporal and five spatial performance indices, in replicating the 21 extreme climate indices during the baseline (1975-2017) in South Korea. The MME data were derived by averaging the simulations from all selected GCMs and three top-ranked GCMs. The random forest (RF) algorithm was also used to derive the MME data from the three top-ranked GCMs. The RF-derived MME data of the three top-ranked GCMs showed the highest performance in simulating the baseline extreme climate which was subsequently used to project the future extreme climate indices under both the representative concentration pathway (RCP) and the socioeconomic concentration pathway scenarios (SSP). The extreme cold and warming indices had declining and increasing trends, respectively, and most extreme precipitation indices had increasing trends over the period 2031-2100. Compared to all scenarios, RCP8.5 showed drastic changes in future extreme climate indices. The coasts in the east, south and west had stronger warming than the rest of the country, while mountain areas in the north experienced more extreme cold. While extreme cold climatology gradually declined from north to south, extreme warming climatology continuously grew from coastal to inland and northern mountainous regions. The results showed that the socially, environmentally and agriculturally important regions of South Korea were at increased risk of facing the detrimental impacts of extreme climatology.

  • PDF

Analysis of outdoor-wear research trends using topic modeling (토픽 모델링을 이용한 아웃도어웨어 연구 동향 분석)

  • Kihyang Han;Minsun Lee
    • The Research Journal of the Costume Culture
    • /
    • v.31 no.1
    • /
    • pp.53-69
    • /
    • 2023
  • This study aims to analyze research trends regarding outdoor wear. For this purpose, the data-collection period was limited to January 2002-October 2022, and the collection consisted of titles of papers, academic names, abstracts, and publication years from the Research Information Sharing Service (RISS). Frequency analysis was conducted on 227 papers in total to check academic journals and annual trends, and LDA topic-modeling analysis was conducted using 20,964 tokens. Data pre-processing was performed prior to topic-modeling analysis; after that, topic-modeling analysis, core topic derivation, and visualization were performed using a Python algorithm. A total of eight topics were obtained from the comprehensive analysis: experiential marketing and lifestyle, property and evaluation of outdoor wear, design and patterns of outdoor wear, outdoor-wear purchase behavior, color, designs and materials of outdoor wear, promotional strategies for outdoor wear, purchase intention and satisfaction depending on the brand image of outdoor wear, differences in outdoor wear preferences by consumer group. The results of topic-modeling analysis revealed that the topic, which includes a study on the design and material of outdoor wear and the pattern of jackets related to the overall shape, was the highest at 30.9% of the total topics. The next highest topic was also the design and color of outdoor wear, indicating that design-related research was the main research topic in outdoor wear research. It is hoped that analyzing outdoor wear research will help comprehend the research conducted thus far and reveal future directions.

Extraction of Lineament and Its Relationship with Fault Activation in the Gaeum Fault System (가음단층계의 선형구조 추출과 선형구조와 단층활동의 관련성)

  • Oh, Jeong-Sik
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.2
    • /
    • pp.69-84
    • /
    • 2019
  • The purpose of this study is to extract lineaments in the southeastern part of the Gaeum Fault System, and to understand their characteristics and a relationship between them and fault activation. The lineaments were extracted using a multi-layered analysis based on a digital elevation model (5 m resolution), aerial photos, and satellite images. First-grade lineaments inferred as an high-activity along them were classified based on the displacement of the Quaternary deposits and the distribution of fault-related landforms. The results of classifying the first-grade lineaments were verified by fieldwork and electrical resistivity survey. In the study area of 510 km2, a total of 222 lineaments was identified, and their total length was 333.4 km. Six grade lineaments were identified, and their total length was 11.2 km. The lineaments showed high-density distribution in the region along the Geumcheon, Gaeum, Ubo fault, and a boundary of the Hwasan cauldron consisting the Gaeum Fault System. They generally have WNW-ESE trend, which is the same direction with the strike of Gaeum Fault System. Electrical resistivity survey was conducted on eight survey lines crossing the first-grade lineament. A low-resistivity zone, which is assumed to be a fault damage zone, has been identified across almost all survey lines (except for only one survey line). The visual (naked eyes) detecting of the lineament was evaluated to be less objectivity than the automatic extraction using the algorithm. However, the results of electrical resistivity survey showed that first-grade lineament extracted by visual detecting was 83% reliable for inferred fault detection. These results showed that objective visual detection results can be derived from multi-layered analysis based on tectonic geomorphology.

Assessment of nonlocal nonlinear free vibration of bi-directional functionally-graded Timoshenko nanobeams

  • Elnaz Zare;Daria K. Voronkova;Omid Faraji;Hamidreza Aghajanirefah;Hamid Malek Nia;Mohammad Gholami;Mojtaba Gorji Azandariani
    • Advances in nano research
    • /
    • v.16 no.5
    • /
    • pp.473-487
    • /
    • 2024
  • The current study employs the nonlocal Timoshenko beam (NTB) theory and von-Kármán's geometric nonlinearity to develop a non-classic beam model for evaluating the nonlinear free vibration of bi-directional functionally-graded (BFG) nanobeams. In order to avoid the stretching-bending coupling in the equations of motion, the problem is formulated based on the physical middle surface. The governing equations of motion and the relevant boundary conditions have been determined using Hamilton's principle, followed by discretization using the differential quadrature method (DQM). To determine the frequencies of nonlinear vibrations in the BFG nanobeams, a direct iterative algorithm is used for solving the discretized underlying equations. The model verification is conducted by making a comparison between the obtained results and benchmark results reported in prior studies. In the present work, the effects of amplitude ratio, nanobeam length, material distribution, nonlocality, and boundary conditions are examined on the nonlinear frequency of BFG nanobeams through a parametric study. As a main result, it is observed that the nonlinear vibration frequencies are greater than the linear vibration frequencies for the same amplitude of the nonlinear oscillator. The study finds that the difference between the dimensionless linear frequency and the nonlinear frequency is smaller for CC nanobeams compared to SS nanobeams, particularly within the α range of 0 to 1.5, where the impact of geometric nonlinearity on CC nanobeams can be disregarded. Furthermore, the nonlinear frequency ratio exhibits an increasing trend as the parameter µ is incremented, with a diminishing dependency on nanobeam length (L). Additionally, it is established that as the nanobeam length increases, a critical point is reached at which a sharp rise in the nonlinear frequency ratio occurs, particularly within the nanobeam length range of 10 nm to 30 nm. These findings collectively contribute to a comprehensive understanding of the nonlinear vibration behavior of BFG nanobeams in relation to various parameters.

Comparative analysis of domestic news trends in Korean Medicine from 2018 to 2022 (한의약에 대한 국내 언론보도 경향 분석 : 2018년~2022년 뉴스 기사 비교)

  • Nayoon Jin;Youngseon Choi;Byungmook Lim
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.27 no.3
    • /
    • pp.1-12
    • /
    • 2023
  • Objectives : The aim of this study is to analyze the news articles related to Korean Medicine(KM) and compare trends in news reports from 2018 to 2022. Method : News articles related to KM were collected through the BigKinds, the news bigdata service of the Korea Press Foundation. News reports from 1 January 2018 to 31 December 2022 were searched. 2,950 news articles out of a total of 12,497 met the inclusion criteria. First, quantitative changes in media coverage were analyzed by year, media outlet, and month. For qualitative analysis, two authors independently coded the content of news articles, discussed them until consensus, and consulted with a third researcher to classify them. In addition, keywords extracted by the BigKind's Topic Rank algorithm were compared and analyzed in each year. Results : The number of news articles on KM decreased by 42% in 2022 compared to 2018. Over a fiveyear period, the Naeil Shinmun reported the most on KM among newspapers, while the Hankyoreh did the least. Among broadcasters, YTN reported the most and SBS did the least. When analyzing the reports by category, the most common was 'treatment', followed by 'prevention' and 'scientification'. As a result of extracting keywords with high weight and frequency, 'immunity' and 'immune system' ranked the first and second in 2018, while 'COVID 19' and 'medical law violation' did in 2022. Conclusion : The decrease in media reports on KM during the COVID-19 epidemic period seems to be due to the limited role of KM in responding to infectious diseases, and efforts to expand the scope of KM can induce increased media reports and social interest.

Research on a system for determining the timing of shipment based on artificial intelligence-based crop maturity checks and consideration of fluctuations in agricultural product market prices (인공지능 기반 농작물 성숙도 체크와 농산물 시장가격 변동을 고려한 출하시기 결정시스템 연구)

  • LI YU;NamHo Kim
    • Smart Media Journal
    • /
    • v.13 no.1
    • /
    • pp.9-17
    • /
    • 2024
  • This study aims to develop an integrated agricultural distribution network management system to improve the quality, profit, and decision-making efficiency of agricultural products. We adopt two key techniques: crop maturity detection based on the YOLOX target detection algorithm and market price prediction based on the Prophet model. By training the target detection model, it was possible to accurately identify crops of various maturity stages, thereby optimizing the shipment timing. At the same time, by collecting historical market price data and predicting prices using the Prophet model, we provided reliable price trend information to shipping decision makers. According to the results of the study, it was found that the performance of the model considering the holiday factor was significantly superior to that of the model that did not, proving that the effect of the holiday on the price was strong. The system provides strong tools and decision support to farmers and agricultural distribution managers, helping them make smart decisions during various seasons and holidays. In addition, it is possible to optimize the distribution network of agricultural products and improve the quality and profit of agricultural products.

Model Type Inference Attack against AI-Based NIDS (AI 기반 NIDS에 대한 모델 종류 추론 공격)

  • Yoonsoo An;Dowan Kim;Dae-seon Choi
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.5
    • /
    • pp.875-884
    • /
    • 2024
  • The proliferation of IoT networks has led to an increase in cyber attacks, highlighting the importance of Network Intrusion Detection Systems (NIDS). To overcome the limitations of traditional NIDS and cope with more sophisticated cyber attacks, there is a trend towards integrating artificial intelligence models into NIDS. However, AI-based NIDS are vulnerable to adversarial attacks, which exploit the weaknesses of algorithm. Model Type Inference Attack is one of the types of attacks that infer information inside the model. This paper proposes an optimized framework for Model Type Inference attacks against NIDS models, applying more realistic assumptions. The proposed method successfully trained an attack model to infer the type of NIDS models with an accuracy of approximately 0.92, presenting a new security threat to AI-based NIDS and emphasizing the importance of developing defence method against such attacks.

A study of Artificial Intelligence (AI) Speaker's Development Process in Terms of Social Constructivism: Focused on the Products and Periodic Co-revolution Process (인공지능(AI) 스피커에 대한 사회구성 차원의 발달과정 연구: 제품과 시기별 공진화 과정을 중심으로)

  • Cha, Hyeon-ju;Kweon, Sang-hee
    • Journal of Internet Computing and Services
    • /
    • v.22 no.1
    • /
    • pp.109-135
    • /
    • 2021
  • his study classified the development process of artificial intelligence (AI) speakers through analysis of the news text of artificial intelligence (AI) speakers shown in traditional news reports, and identified the characteristics of each product by period. The theoretical background used in the analysis are news frames and topic frames. As analysis methods, topic modeling and semantic network analysis using the LDA method were used. The research method was a content analysis method. From 2014 to 2019, 2710 news related to AI speakers were first collected, and secondly, topic frames were analyzed using Nodexl algorithm. The result of this study is that, first, the trend of topic frames by AI speaker provider type was different according to the characteristics of the four operators (communication service provider, online platform, OS provider, and IT device manufacturer). Specifically, online platform operators (Google, Naver, Amazon, Kakao) appeared as a frame that uses AI speakers as'search or input devices'. On the other hand, telecommunications operators (SKT, KT) showed prominent frames for IPTV, which is the parent company's flagship business, and 'auxiliary device' of the telecommunication business. Furthermore, the frame of "personalization of products and voice service" was remarkable for OS operators (MS, Apple), and the frame for IT device manufacturers (Samsung) was "Internet of Things (IoT) Integrated Intelligence System". The econd, result id that the trend of the topic frame by AI speaker development period (by year) showed a tendency to develop around AI technology in the first phase (2014-2016), and in the second phase (2017-2018), the social relationship between AI technology and users It was related to interaction, and in the third phase (2019), there was a trend of shifting from AI technology-centered to user-centered. As a result of QAP analysis, it was found that news frames by business operator and development period in AI speaker development are socially constituted by determinants of media discourse. The implication of this study was that the evolution of AI speakers was found by the characteristics of the parent company and the process of co-evolution due to interactions between users by business operator and development period. The implications of this study are that the results of this study are important indicators for predicting the future prospects of AI speakers and presenting directions accordingly.

Classification Algorithm-based Prediction Performance of Order Imbalance Information on Short-Term Stock Price (분류 알고리즘 기반 주문 불균형 정보의 단기 주가 예측 성과)

  • Kim, S.W.
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.157-177
    • /
    • 2022
  • Investors are trading stocks by keeping a close watch on the order information submitted by domestic and foreign investors in real time through Limit Order Book information, so-called price current provided by securities firms. Will order information released in the Limit Order Book be useful in stock price prediction? This study analyzes whether it is significant as a predictor of future stock price up or down when order imbalances appear as investors' buying and selling orders are concentrated to one side during intra-day trading time. Using classification algorithms, this study improved the prediction accuracy of the order imbalance information on the short-term price up and down trend, that is the closing price up and down of the day. Day trading strategies are proposed using the predicted price trends of the classification algorithms and the trading performances are analyzed through empirical analysis. The 5-minute KOSPI200 Index Futures data were analyzed for 4,564 days from January 19, 2004 to June 30, 2022. The results of the empirical analysis are as follows. First, order imbalance information has a significant impact on the current stock prices. Second, the order imbalance information observed in the early morning has a significant forecasting power on the price trends from the early morning to the market closing time. Third, the Support Vector Machines algorithm showed the highest prediction accuracy on the day's closing price trends using the order imbalance information at 54.1%. Fourth, the order imbalance information measured at an early time of day had higher prediction accuracy than the order imbalance information measured at a later time of day. Fifth, the trading performances of the day trading strategies using the prediction results of the classification algorithms on the price up and down trends were higher than that of the benchmark trading strategy. Sixth, except for the K-Nearest Neighbor algorithm, all investment performances using the classification algorithms showed average higher total profits than that of the benchmark strategy. Seventh, the trading performances using the predictive results of the Logical Regression, Random Forest, Support Vector Machines, and XGBoost algorithms showed higher results than the benchmark strategy in the Sharpe Ratio, which evaluates both profitability and risk. This study has an academic difference from existing studies in that it documented the economic value of the total buy & sell order volume information among the Limit Order Book information. The empirical results of this study are also valuable to the market participants from a trading perspective. In future studies, it is necessary to improve the performance of the trading strategy using more accurate price prediction results by expanding to deep learning models which are actively being studied for predicting stock prices recently.

Analysis on the Snow Cover Variations at Mt. Kilimanjaro Using Landsat Satellite Images (Landsat 위성영상을 이용한 킬리만자로 만년설 변화 분석)

  • Park, Sung-Hwan;Lee, Moung-Jin;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.4
    • /
    • pp.409-420
    • /
    • 2012
  • Since the Industrial Revolution, CO2 levels have been increasing with climate change. In this study, Analyze time-series changes in snow cover quantitatively and predict the vanishing point of snow cover statistically using remote sensing. The study area is Mt. Kilimanjaro, Tanzania. 23 image data of Landsat-5 TM and Landsat-7 ETM+, spanning the 27 years from June 1984 to July 2011, were acquired. For this study, first, atmospheric correction was performed on each image using the COST atmospheric correction model. Second, the snow cover area was extracted using the NDSI (Normalized Difference Snow Index) algorithm. Third, the minimum height of snow cover was determined using SRTM DEM. Finally, the vanishing point of snow cover was predicted using the trend line of a linear function. Analysis was divided using a total of 23 images and 17 images during the dry season. Results show that snow cover area decreased by approximately $6.47km^2$ from $9.01km^2$ to $2.54km^2$, equivalent to a 73% reduction. The minimum height of snow cover increased by approximately 290 m, from 4,603 m to 4,893 m. Using the trend line result shows that the snow cover area decreased by approximately $0.342km^2$ in the dry season and $0.421km^2$ overall each year. In contrast, the annual increase in the minimum height of snow cover was approximately 9.848 m in the dry season and 11.251 m overall. Based on this analysis of vanishing point, there will be no snow cover 2020 at 95% confidence interval. This study can be used to monitor global climate change by providing the change in snow cover area and reference data when studying this area or similar areas in future research.