DOI QR코드

DOI QR Code

A study of Artificial Intelligence (AI) Speaker's Development Process in Terms of Social Constructivism: Focused on the Products and Periodic Co-revolution Process

인공지능(AI) 스피커에 대한 사회구성 차원의 발달과정 연구: 제품과 시기별 공진화 과정을 중심으로

  • Cha, Hyeon-ju (Media Culture Content Research Institute, Sungkyunkwan University) ;
  • Kweon, Sang-hee (Dep of Journalism and Mass Communication, Sungkyunkwan University)
  • Received : 2020.05.13
  • Accepted : 2021.01.17
  • Published : 2021.02.28

Abstract

his study classified the development process of artificial intelligence (AI) speakers through analysis of the news text of artificial intelligence (AI) speakers shown in traditional news reports, and identified the characteristics of each product by period. The theoretical background used in the analysis are news frames and topic frames. As analysis methods, topic modeling and semantic network analysis using the LDA method were used. The research method was a content analysis method. From 2014 to 2019, 2710 news related to AI speakers were first collected, and secondly, topic frames were analyzed using Nodexl algorithm. The result of this study is that, first, the trend of topic frames by AI speaker provider type was different according to the characteristics of the four operators (communication service provider, online platform, OS provider, and IT device manufacturer). Specifically, online platform operators (Google, Naver, Amazon, Kakao) appeared as a frame that uses AI speakers as'search or input devices'. On the other hand, telecommunications operators (SKT, KT) showed prominent frames for IPTV, which is the parent company's flagship business, and 'auxiliary device' of the telecommunication business. Furthermore, the frame of "personalization of products and voice service" was remarkable for OS operators (MS, Apple), and the frame for IT device manufacturers (Samsung) was "Internet of Things (IoT) Integrated Intelligence System". The econd, result id that the trend of the topic frame by AI speaker development period (by year) showed a tendency to develop around AI technology in the first phase (2014-2016), and in the second phase (2017-2018), the social relationship between AI technology and users It was related to interaction, and in the third phase (2019), there was a trend of shifting from AI technology-centered to user-centered. As a result of QAP analysis, it was found that news frames by business operator and development period in AI speaker development are socially constituted by determinants of media discourse. The implication of this study was that the evolution of AI speakers was found by the characteristics of the parent company and the process of co-evolution due to interactions between users by business operator and development period. The implications of this study are that the results of this study are important indicators for predicting the future prospects of AI speakers and presenting directions accordingly.

본 연구는 전통뉴스 보도에 나타난 인공지능(AI)스피커 뉴스 텍스트 분석을 통해 인공지능(AI) 스피커 발달과정을 분류하고 시기별 제품별 특성을 파악하였다. 또한 AI 스피커 사업자 제품별 뉴스 보도와 시기별 뉴스 보도간의 상관관계를 분석하였다. 분석에 사용된 이론적 배경은 뉴스의 프레임과 토픽프레임이다. 분석방법으로는 LDA 방식을 활용한 토픽모델링(Topic Modeling)과 의미연결망분석이 사용되었으며, 추가로 'UCINET'중 QAP분석을 적용하였다. 연구방법은 내용분석 방법으로 2014년부터 2019년까지 AI 스피커 관련 2,710건의 뉴스를 1차로 수집하였고, 2차적으로 Nodexl 알고리즘을 이용하여 토픽프레임을 분석하였다. 분석 결과 첫째, AI 스피커 사업자 유형별 토픽 프레임의 경향은 4개 사업자(통신사업자, 온라인 플랫폼, OS 사업자, IT디바이스 생산업자) 특성에 따라 다르게 나타났다. 구체적으로, 온라인 플랫폼 사업자(구글, 네이버, 아마존, 카카오)와 관련한 프레임은 AI 스피커를 '검색 또는 입력 디바이스'로 사용하는 프레임의 비중이 높았다. 반면 통신 사업자(SKT, KT)는 모회사의 주력 사업인 IPTV, 통신 사업의 '보조 디바이스' 관련한 프레임이 두드러지게 나타났다. 나아가 OS 사업자(MS, 애플)는 '제품의 의인화 및 음성 서비스' 프레임이 두드러지게 보였으며, IT 디바이스 생산업자(삼성)는 '사물인터넷(IoT) 종합지능시스템'과 관련한 프레임이 두드러지게 나타났다. 둘째, AI 스피커 시기별(연도별) 토픽 프레임의 경향은 1기(2014-2016년)에는 AI 기술 중심으로 발달하는 경향을 보였고, 2기(2017-2018년)에는 AI 기술과 이용자 간의 사회적 상호 작용과 관련되어 있었으며, 3기(2019년)에는 AI 기술 중심에서 이용자 중심으로 전환되는 경향을 나타냈다. QAP 분석 결과, AI 스피커 발달에서 사업자별과 시기별 뉴스 프레임이 미디어 담론의 결정요인에 의해 사회적으로 구성되는 것을 알 수 있었다. 본연구의 함의는 AI 스피커 진화는 사업자별, 발달시기별로 모회사 기업의 특성과 이용자 간의 상호작용으로 인한 공진화 과정이 나타냄을 발견할 수 있었다. 따라서 본 연구는 AI 스피커의 향후 전망을 예측하고 그에 따른 방향성을 제시하는 데 중요한 시사점을 제공한다.

References

  1. NASS, Clifford, STEUER, Jonathan, TAUBER, Ellen R. "Computers are social actors", In: Proceedings of the SIGCHI conference on Human factors in computing systems, p. 72-78, 1994.
  2. REEVES, Byron. & NASS, Clifford Ivar. "The media equation: How people treat computers, television, and new media like real people and places", England: Cambridge university press, 1996.
  3. Sang Hee, Kweon. "Verification of Digital Media Development Model," Korean Journal of Communication & Information, Vol. 8, no. 2, pp.35-87, 2005.
  4. Sang-Hee, Kweon., Hyeon-Ju, Cha. "A Study on AI Evolution Trend based on Topic Frame Modeling," the Journal of the Korea Digital Content Association, Vol. 20, no. 7, pp.66-85, 2020.
  5. Kim, K., Kim, H. "Analysis of distinctive feature and security of AI personal assistant", Proceeding of the Institute of Electronics Engineers of Korea, pp.486-488, 2017.
  6. Condliffe, J. "In 2016, AI home assistants won our hearts", Online publish: MIT Technology Review, 2016.12.20.https://www.technologyreview.com/2016/12/20/155032/in-2016-ai-home-assistants-won-our-hearts/
  7. Werner, Goertz., Roberta, Cozza.. "Market Trends: VPA Speakers, Worldwide, 2017". Online publish:: Gartner Research, 2017.06.23.https://www.gartner.com/en/documents/3748617/market-trends-vpa-speakers-worldwide-2017
  8. Young-Ju, Han., Sang-Ho, Lee. "Factors Affecting the Intention of Continuous Use of AI Speakers: Focusing on Media Efficacy and Social Presence", Korean Management Consulting Review, Vol. 19, no. 3, pp.83-95, 2019.
  9. Heejun, Lee., Chang-Hoan, Cho., So-yoon Lee. "A Study on Consumers Perception of and Use Motivation of Artificial Intelligence(AI) Speaker", The Korea Contents Society, Vol. 19, no. 3, pp.138-154, 2019.
  10. Ju-Yeoun, Na., Young-Hwan, Pan., Jeong-Yun, Heo. "Classification of Customer Utility for Voice Interactive Function of AI Personal Assistant Services : Based on KANO Model", Design Convergence Study, Vol. 65, no. 16, pp.68-80, 2017.
  11. Gyu-Eun, Jo., Seung-In, Kim. "A study on User Experience of Artificial Intelligence speaker", Journal of the Korea Convergence Society, Vol. 9, no. 8, pp.127-133, 2018. https://doi.org/10.15207/JKCS.2018.9.8.127
  12. Nasmedia. "DIGITAL MEDIA & MARKETING TREND FORECASTING", pp.1-26, 2018.12.10. https://www.nasmedia.co.kr/정기보고서/2018년도-12월-2020-전망_digital-media-marketing-trend/
  13. Ji-seop, Lee., Soo-young, Kang., Seung-joo, Kim. "Study on the AI Speaker Security Evaluations and Countermeasure", Journal of the Korea Institute of Information Security & Cryptology, Vol. 28, no. 6, pp.1523-1537, 2018. https://doi.org/10.13089/JKIISC.2018.28.6.1523
  14. Gyu-Eun, Jo., Seung-In, Kim. "A study on User Experience of Artificial Intelligence speaker", Journal of the Korea Convergence Society, Vol. 9, no. 8, pp.127-133, 2018. https://doi.org/10.15207/JKCS.2018.9.8.127
  15. Mi-jung, Kwon., Jong-moo, Kim. "An Analysis of Users Attitudes and Satisfaction toward the Motivation of Artificial Intelligence Speaker -Based on the Theory of Diffusion of Innovations-", Society of communication Design, Vol. 65, pp.472-484, 2018.
  16. Heejun, Lee., Chang-Hoan, Cho., So-yoon Lee. "A Study on Consumers Perception of and Use Motivation of Artificial Intelligence(AI) Speaker", The Korea Contents Society, Vol. 19, no. 3, pp.138-154, 2019.
  17. Jin-Myung, Lee., Minji, Jung., Jurae, Lee. "Consumer Perception and Adoption Intention of Artificial Intelligent Speaker: Non-Users Perspective", Korean Society Of Consumer Studies, Vol. 30, no. 2, pp.193-213, 2019.
  18. Dong-Hee, Cho., Youn-Joon, Lee. "Factors that Affect User Satisfaction toward Continuous Usage of AI Speakers - Focusing on The Mediation Effect of Emotional Attachment -", Journal of Korea Design Forum, Vol. 24, no. 2, 2019.
  19. Wasserman, Stanley and Faust, Katherine. "Social network analysis: Methods and Application", NY: Cambridge University Press, 1994.
  20. Blei, D. M., Ng, A. Y., & Jordan, M. I. "Latent dirichlet allocation". Journal of machine Learning research, Vol. 3, No. Jan, pp.993-1022, 2003.
  21. Yong-Suk, Hwang., Joon-Oeung, Lee., Dong-Young, Son., Sang-Min, Kim., Kyung-Han, Yu., Se-Jung, Choi., Ik-Hyun, Kim., Dae-Won, Kim., Ryung-Ju., Pak., Yeoung-Min, Baek., Sang-Yuep, Lee., Yun-Taek, Sung. "Journalism Studies on Data Generation", Korea, Seoul: Communication Books, 2017.
  22. Mimno, D., & McCallum, A. "Topic models conditioned on arbitrary features with Dirichlet-multinomial regression", The 24th Conference on Uncertainty in Artificial Intelligence, pp.411-418, 2008.
  23. Ja-Hyun, Park., Min, Song. "A Study on the Research Trends in Library & Information Science in Korea using Topic Modeling", Journal of the Korean Society for Information Management, Vol. 20, no. 1, pp.7-32, 2013.
  24. Clauset, Aaron., E. J. Newman, Cristopher Moore. "Finding community structure in very large networks", Physical. Review. Vol. 70, no, 6. 2004.