• Title/Summary/Keyword: trellis codes

Search Result 68, Processing Time 0.025 seconds

Turbo Codes with DC-Free Trellis Codes as Constituent Codes (무직류 격자형부호를 구성부호기로 가지는 터보부호)

  • 이병길;정창기배상재주언경
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.175-178
    • /
    • 1998
  • In this paper, turbo codes with the DC-free trellis codes based on partition chain as constituent codes are presente. And efficient methods to design the DC-free turbo codes are introduced. An iterative decoding with the MAP algorithm is used for the decoding of the turbo codes designed by various methods. As results of simulations, the presented DC-free turbo codes show better error performances than the DC-free trellis codes.

  • PDF

Iterative Symbol Decoding of Variable-Length Codes with Convolutional Codes

  • Wu, Hung-Tsai;Wu, Chun-Feng;Chang, Wen-Whei
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.40-49
    • /
    • 2016
  • In this paper, we present a symbol-level iterative source-channel decoding (ISCD) algorithm for reliable transmission of variable-length codes (VLCs). Firstly, an improved source a posteriori probability (APP) decoding approach is proposed for packetized variable-length encoded Markov sources. Also proposed is a recursive implementation based on a three-dimensional joint trellis for symbol decoding of binary convolutional codes. APP channel decoding on this joint trellis is realized by modification of the Bahl-Cocke-Jelinek-Raviv algorithm and adaptation to the non-stationary VLC trellis. Simulation results indicate that the proposed ISCD scheme allows to exchange between its constituent decoders the symbol-level extrinsic information and achieves high robustness against channel noises.

A Study on the Structure of Turbo Trellis Coded Modulation with an Effectively Reduced Complexity in Wireless Communication Channel (무선통신채널에서 효과적으로 감소된 복잡도를 갖는 Turbo Trellis Coded Modulation 구조 연구)

  • Kim Jeong-su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.5
    • /
    • pp.409-412
    • /
    • 2004
  • This paper shows that the proposed Turbo TCM(Turbo Trellis Coded Modulation) has a good performance with a little complexity of decoder. The encoder structure, which is connected with Turbo Codes, is the proposed modulation technique for an efficient bandwidth, This method is used symbol by symbol MAP decoder of iteration similar to binary Turbo Codes in the receiver. The result shows that the BER performance according to iteration is improved about 2,5dB at $BER=10^{-2}$ compared to Turbo Codes with Gray mapping.

  • PDF

A Study on Symbol-based Decoding for Turbo Codes (심볼 단위로 복호화가 이루어지는 터보부호에 관한 연구)

  • 김태국;심용걸
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.273-276
    • /
    • 2001
  • In this thesis we propose symbol-based decoding for turbo codes which is used SOVA as a decoding algorithm. The proposed turbo codes that is interleaved on symbol-by-symbol basis and inputted as n-bit symbols to the decoder. This method makes that the stages of the original trellis are merged together and the trellis depth is reduced by 1/n. We research turbo codes with symbol size n=2 in this paper and its performance.

  • PDF

Design of Space-Time Trellis Code with Uniform Error Property (균일 오율의 시공간 격자상 부호 설계)

  • Jung Young-Seok;Lee Jae-Hong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.8 s.350
    • /
    • pp.59-68
    • /
    • 2006
  • The study on the uniform error property of codes has been restricted to additive white Gaussian noise (AWGN) channel, which is generally referred to as geometrical uniformity. In this paper, we extend the uniform error property to space-time codes in multiple-input multiple-output (MIMO) channel by directly treating the probability density functions fully describing the transmission channel and the receiver. Moreover, we provide the code construction procedure for the geometrically uniform space-time trellis codes in fast MIMO channels, which consider the distance spectrum. Due to the uniform error property, the complexity of code search is extensively reduced. Such reduction makes it possible to obtain the optimal space-time trellis codes with high order states. Simulation results show that new codes offer a better performance in fast MIMO channels than other known codes.

Design and Performance of Space-Time Trellis Codes for Rapid Rayleigh Fading Channels

  • Zummo, Salam A.;Al-Semari, Saud A.
    • Journal of Communications and Networks
    • /
    • v.5 no.2
    • /
    • pp.174-183
    • /
    • 2003
  • Space-Time (ST) codes are known to provide high transmission rates, diversity and coding gains. In this paper, a tight upper bound on the error probability of ST codes over rapid fading channels is presented. Moreover, ST codes suitable for rapid fading channels are presented. These codes are designed using the QPSK and 16-QAM signal constellations. The proposed codes are based on two different encoding schemes. The first scheme uses a single trellis encoder, whereas the second scheme uses the I-Q encoding technique. Code design is achieved via partitioning the signal space such that the design criteria are maximized. As a solution for the decoding problem of I-Q ST codes, the paper introduces a low-complexity decoding algorithm. Results show that the I-Q ST codes using the proposed decoding algorithm outperform singleencoder ST codes with equal complexity. The proposed codes are tested over fading channels with different interleaving conditions, where it is shown that the new codes are robust under such imperfect interleaving conditions.

An efficient punctured-coded TCM for the mobile satellite channel (이동 위성 채널에서 효율적인 Punctured TCM 방식)

  • 박성경;김종일;홍성권;주판유;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.8
    • /
    • pp.2063-2076
    • /
    • 1996
  • In this thesis, in order to apply a punctured convolutional codes to the trellis coded modulation(TCM), an efficient punctured trellis coded modulation(PTCM) based on the decomposition of the metric into orthogonal components is presented. Also, a simulation is performed in an additive white Gaussian noise(AWGN) and a rician fading channel modeling the mobile satellite channel. The PTCM combines punctured convolutional coding with MPSK modulation to provide a large coding gain in a power-limited or bandwidth-limited channel. However, in general the use of the punctured convolutional code structure in the decoder results in a performance loss in comparison to trellis codes, due to difficulties in assigning metrics. But, the study shows no loss in performance for punctured trellis coded MPSK in comparison to TCM, and what is more, the punctured convolutional codes results in some savings in the complexity of Viterbi decoders, compared to TCM of the same rate. Also, the results shows that the punctured trellis coded .pi./8 shift 8PSK is an attractive scheme for power-limited and band-limited systems and especially, the Viterbi decoder with first and Lth phase difference metrics improves BER performance by the mobile satellite channel.

  • PDF

Serially Concatenated Space-Time LDPC Codes for High Data Rate Wireless Communication (고속 무선 통신을 위한 직렬 연접 시공간 LDPC 부호에 관한 연구)

  • 장혜경;이문호
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.335-338
    • /
    • 2002
  • For high data rate transmission over wireless fading channels, space-time trellis ceding techniques can be employed to increase the Information capacity of the communication system dramatically. In this paper, we consider the concatenated space time LDPC (Low Density Parity Check) codes. Extra ceding gains In addition to the diversity advantage is shown to be achieved for certain space-time trellis codes transmitted over quasi-static lading channels.

  • PDF

Multi-dimensional DC-free trellis codes based on tow-dimensional constellation (2차원 성상도를 이용한 다차원 무직류 격자형부호)

  • 정창기;황성준;주언경
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.3
    • /
    • pp.47-53
    • /
    • 1998
  • Multi-dimensional DC-free trellis codes based on two-dimensional constellation which can be omplemented more easily than conventional codes are proposed and their performances are analyzed in this paper. 2N-dimensional constellation of the proposed codes is constructed by concatenating N 2-dimensional constellation. Thus, for the proposed codes, information bits can be assigned easily to each signal point of the 2-dimensional consteellation and DC-free characteristic can be simply obtained by the symmetric structure of the constellation. In addition, since Viterbi decoder can calculate multi-dimensional Euchlidean distance between signals by simple sum of each 2-dimensional Euclidean distanc, decoding complexity can be reduced. The performance analysis shows that the proposed codes have almost same spectral characteristic and error performance as compared with conventional codes. However, the complexity is shown to be reduced further due to the construction method of contellation and the simple decoding algorithm of the proposed codes.

  • PDF

Performance of the Concatenated System of MTCM Codes with STBC on Fast Rayleigh Fading Channels (빠른 레일리 페이딩채널에서 MTCM 부호와 STBC를 결합한 시스템의 성능평가)

  • Jin, Ik-Soo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.6
    • /
    • pp.141-148
    • /
    • 2009
  • Space-time block codes (STBC) have no coding gain but they provide a full diversity gain with relatively low encoder/decoder complexity. Therefore, STBC should be concatenated with an outer code which provides an additional coding gain. In this paper, we consider the concatenation of multiple trellis-coded modulation (MTCM) codes with STBC for achieving significant coding gain with full antenna diversity. Using criteria of equal transmit power, spectral efficiency and the number of trellis states, the performance of concatenated scheme is compared to that of previously known space-time trellis codes (STTC) in terms of frame error rate (FER). Simulation results show that MTCM codes concatenated with STBC offer better performance on fast Rayleigh fading channels, than previously known STTC with two transmit antennas and one receive antenna.

  • PDF