Design of Space-Time Trellis Code with Uniform Error Property

균일 오율의 시공간 격자상 부호 설계

  • Jung Young-Seok (School of Electrical Engineering and Computer Science and INMC, Seoul National University) ;
  • Lee Jae-Hong (School of Electrical Engineering and Computer Science and INMC, Seoul National University)
  • 정영석 (서울대학교 전기컴퓨터공학부) ;
  • 이재홍 (서울대학교 전기컴퓨터공학부)
  • Published : 2006.08.01

Abstract

The study on the uniform error property of codes has been restricted to additive white Gaussian noise (AWGN) channel, which is generally referred to as geometrical uniformity. In this paper, we extend the uniform error property to space-time codes in multiple-input multiple-output (MIMO) channel by directly treating the probability density functions fully describing the transmission channel and the receiver. Moreover, we provide the code construction procedure for the geometrically uniform space-time trellis codes in fast MIMO channels, which consider the distance spectrum. Due to the uniform error property, the complexity of code search is extensively reduced. Such reduction makes it possible to obtain the optimal space-time trellis codes with high order states. Simulation results show that new codes offer a better performance in fast MIMO channels than other known codes.

채널 부호의 균일 오율에 대한 연구는 부가성백색가우시안 채널에 대해 국한되어 연구되어 왔으며, 기하학적 균일성으로 불려왔다. 본 논문에서는 전송 채널과 수신기를 완전히 묘사해주는 확률밀도함수를 직접 다루어 균일 오율 특성을 다중 송수신안테나가 사용되는 시공간 부호로 확장한다. 또한 빠른 페이딩 채널에서 곱거리 스펙트럼를 고려한 기하학적 균일 시공간 부호 설계 과정을 보여준다. 균일 오율 특성으로 부호 검색의 복잡도가 현격히 감소하고, 이런 복잡도 감소는 높은 상태 수를 갖는 시공간 격사상 부호에 대해서도 최적의 부호 검색을 가능하게 한다. 모의 실험을 통해 새로 설계된 부호가 다른 알려진 부호들에 비해 빠른 페이딩 채널에서 더 좋은 성능을 가지는 것을 확인한다.

Keywords

References

  1. V. Tarokh, N. Seshadri, and A. R. Calderbank, 'Space-time codes for high data rate wireless communication: Performance criterion and code construction,' IEEE Trans. Inform Theory, vol. 44, no. 2, pp. 744-765, Mar. 1998 https://doi.org/10.1109/18.661517
  2. A. R. Hammons, Jr. and H. El Garnal, 'On the theory of space-time codes for PSK modulation,' IEEE Trans. Inform Theory, vol. 46, no. 2, pp. 524-542, Mar. 2000 https://doi.org/10.1109/18.825816
  3. S. Baro, G. Bauch, and A. Hansmann, 'Improved codes for space-time trellis-coded modulation,' IEEE Commun Lett, vol. 4, no. 1, pp, 20-22, Jan. 2000 https://doi.org/10.1109/4234.823537
  4. Q. Yan and R. S. Blum, 'Optimum space-time convolutional codes,' in Proc. IEEE WCNC, pp. 1351-1355, Chicago, IL, U.S.A, Sept. 2000 https://doi.org/10.1109/WCNC.2000.904828
  5. M. Tao and R. S. Cheng, 'Improved design criteria and new trellis codes for space-time coded modulation in slow flat fading channels,' IEEE Commun Lett., vol. 5, no. 7, pp. 313-315, July 2000 https://doi.org/10.1109/4234.935753
  6. W. Firmanto, B. S. Vucetic, and J. Yuan, 'Space-time TCM with improved performance on fast fading channels,' IEEE Commun Lett., vol. 5, no. 4, pp. 154-156, Apr. 2001 https://doi.org/10.1109/4234.917098
  7. G. Zhou, Y. Wang, Z. Zhang, and K M. Chugg, 'On space-time convolutional codes for PSK modulation,' in Proc. IEEE ICC 2001, 1122-1126, Helsinki, Finland, June 2001 https://doi.org/10.1109/ICC.2001.936834
  8. D. Aktas and M. P. Fitz, 'Computing the distance spectrum of space-time trellis codes,' in Proc. IEEE WCNC 2000, pp. 51-55, Chicago, IL, U.S.A., Sept. 2000 https://doi.org/10.1109/WCNC.2000.904599
  9. Y. S. Jung and J. H. Lee; 'New measure of coding gain for space-time trellis codes,' in Proc. IEEE ISIT 2001, p, 198, Washington, D.C., U.S.A., June 2001 https://doi.org/10.1109/ISIT.2001.936061
  10. G. D. Forney, Jr., 'Geometrically uniform codes,' IEEE Trans. Inform Theory, vol. 37, no. 5, pp. 1241-1260, Sept. 1991 https://doi.org/10.1109/18.133243
  11. Y. Levy and D. J. Costello, Jr., 'A geometric construction procedure for geometrically uniform trellis codes,' IEEE Trans. Inform Theory, vol. 42, no. 5, pp. 1498-1513, Sept. 1996 https://doi.org/10.1109/18.532890
  12. Z. Yan and D. M. Ionescu, 'Geometrical uniformity of a class of space-time trellis codes,' IEEE Trans. Inform Theory, vol. 50, no. 12, pp. 3343-3347, Dec. 2004 https://doi.org/10.1109/TIT.2004.838107
  13. B. L. Hughes, 'Optimal space-time constellations from groups,' IEEE Trans. Inform Theory, vol. ?49, no. 2, pp. 401-410, Feb. 2003 https://doi.org/10.1109/TIT.2002.807283
  14. J. G. Proakis, Digital Communications, 3rd ed. New York: McGRAW-HILL, 1995
  15. J. B. Fraleigh, A first course in abstract algebra, Addison-Wesley, 1998
  16. G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. The John Hopkins University Press, 1996
  17. R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 1985