• Title/Summary/Keyword: tree map

Search Result 317, Processing Time 0.031 seconds

Assessment of Above Ground Carbon Stock in Trees of Ponda Watershed, Rajouri (J&K)

  • Ahmed, Junaid;Sharma, Sanjay
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.2
    • /
    • pp.120-128
    • /
    • 2016
  • Forest sequesters large terrestrial carbon which is stored in the biomass of tree and plays a key role in reducing atmospheric carbon. Thus, the objectives of the present study were to assess the growing stock, above ground biomass and carbon in trees of Ponda watershed of Rajouri district (J&K). IRS-P6 LISS-III satellite data of October 2010 was used for preparation of land use/land cover map and forest density map of the study area by visual interpretation. The growing stock estimation was done for the study area as well as for the sample plots laid in forest and agriculture fields. The growing stock and biomass of trees were estimated using species specific volume equations and using specific gravity of wood, respectively. The total growing stock in the study area was estimated to be $0.25million\;m^3$ which varied between $85.94m^3/ha$ in open pine to $11.58m^3/ha$ in degraded pine forest. However in agriculture area, growing stock volume density of $14.85m^3/ha$ was recorded. Similarly, out of the total biomass (0.012 million tons) and carbon (0.056 million tons) in the study area, open pine forest accounted for the highest values of 43.74 t/ha and 19.68 t/ha and lowest values of 5.68 t/ha and 2.55 t/ha, respectively for the degraded pine forest. The biomass and carbon density in agriculture area obtained was 5.49 t/ha and 2.47 t/ha, respectively. In all the three forest classes Pinus roxburghii showed highest average values of growing stock volume density, biomass and carbon.

Estimation of Canopy Cover in Forest Using KOMPSAT-2 Satellite Images (KOMPSAT-2 위성영상을 이용한 산림의 수관 밀도 추정)

  • Chang, An-Jin;Kim, Yong-Min;Kim, Yong-Il;Lee, Byoung-Kil;Eo, Yan-Dam
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.1
    • /
    • pp.83-91
    • /
    • 2012
  • Crown density, which is defined as the proportion of the forest floor concealed by tree crown, is important and useful information in various fields. Previous methods of measuring crown density have estimated crown density by interpreting aerial photographs or through a ground survey. These are time-consuming, labor-intensive, expensive and inconsistent approaches, as they involve a great deal of subjectivity and rely on the experience of the interpreter. In this study, the crown density of a forest in Korea was estimated using KOMPSAT-2 high-resolution satellite images. Using the image segmentation technique and stand information of the digital forest map, the forest area was divided into zones. The crown density for each segment was determined using the discriminant analysis method and the forest ratio method. The results showed that the accuracy of the discriminant analysis method was about 60%, while the accuracy of the forest ratio method was about 85%. The probability of extraction of candidate to update was verified by comparing the result with the digital forest map.

Natural Spread Pattern of Damaged Area by Pine Wilt Disease Using Geostatistical Analysis (공간통계학적 방법에 의한 소나무 재선충 피해의 자연적 확산유형분석)

  • Son, Min-Ho;Lee, Woo-Kyun;Lee, Seung-Ho;Cho, Hyun-Kook;Lee, Jun-Hak
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.3
    • /
    • pp.240-249
    • /
    • 2006
  • Recently, dispersion of damaged forest by pine wilt disease has been regarded as a serious social issue. Damages by pine wilt disease have been spreaded by natural area expansion of the vectors in the damaged area, while the national wide damage spread has induced by human-involved carrying infected trees out of damaged area. In this study, damaged trees were detected and located on the digital map by aerial photograph and terrestrial surveys. The spatial distribution pattern of damaged trees, and the relationship of spatial distribution of damaged trees and some geomorphological factors were geostatistically analysed. Finally, we maked natural spread pattern map of pine wilt disease using geostatistical CART(Classification and Regression Trees) model. This study verified that geostatistical analysis and CART model are useful tools for understanding spatial distribution and natural spread pattern of pine wilt diseases.

A Study on Road Extraction for Improving the Quality in Conflation between Aerial Image and Road Map (항공사진과 도로지도 간 합성 품질 향상을 위한 도로 추출 연구)

  • Yang, Sung-Chul;Lee, Won-Hee;Yu, Ki-Yun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.6
    • /
    • pp.593-599
    • /
    • 2011
  • With increasing user applicability of geospatial data, user demand for manifold and accurate information has increased. The usefulness of these services derives from their combination of the advantages of as-built geospatial data in making new content. There is a spatial inconsistency and shape disagreement in fusing heterogeneous data. Conflation, defined as the combining of information from diverse sources so as to reconcile spatial inconsistencies and shape disagreement, is possible solution to the problem. In this research, we developed the technique for removing shape disagreement between aerial image and road map removed spatial inconsistency in advanced research. The process includes four processes: producing of a road candidate image, extraction of vertices, and generation of a graph by connecting the vertices. We could remove the shape disagreement using the extracted road that was derived from finding the road possible path.

Rural Land Cover Classification using Multispectral Image and LIDAR Data (디중분광영상과 LIDAR자료를 이용한 농업지역 토지피복 분류)

  • Jang Jae-Dong
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.2
    • /
    • pp.101-110
    • /
    • 2006
  • The accuracy of rural land cover using airborne multispectral images and LEAR (Light Detection And Ranging) data was analyzed. Multispectral image consists of three bands in green, red and near infrared. Intensity image was derived from the first returns of LIDAR, and vegetation height image was calculated by difference between elevation of the first returns and DEM (Digital Elevation Model) derived from the last returns of LIDAR. Using maximum likelihood classification method, three bands of multispectral images, LIDAR vegetation height image, and intensity image were employed for land cover classification. Overall accuracy of classification using all the five images was improved to 85.6% about 10% higher than that using only the three bands of multispectral images. The classification accuracy of rural land cover map using multispectral images and LIDAR images, was improved with clear difference between heights of different crops and between heights of crop and tree by LIDAR data and use of LIDAR intensity for land cover classification.

Analyzing Climate Zones Using Hydro-Meteorological Observation Data in Andong Dam Watershed, South Korea (수문기상 관측정보를 활용한 안동댐 유역 기후권역 구분 및 분석)

  • Kim, Sea Jin;Lim, Chul-Hee;Lim, Yoon-Jin;Moon, Jooyeon;Song, Cholho;Lee, Woo-Kyun
    • Journal of Climate Change Research
    • /
    • v.7 no.3
    • /
    • pp.269-282
    • /
    • 2016
  • Watershed area can be submerged due to constructions and management of dams, and these change can impact not only on ecosystem and environment of river basin area but also on local climate. This study is conducted to construct and classify climate zones of Andong Dam watershed where the area is submerged due to the construction of the dam. By applying Principal Components Analysis (PCA) and Getis-Ord $Gi^*$ statistics, three climate zones were classified for the result. Each zone was then analyzed and validated with climatic and geological features including topography, land cover, and forest type map. As a result of the analysis, there was a difference in temperature, elevation, precipitation and tree species distribution among the zones. Also, an analysis of land cover map showed that there were more agricultural land near Andong Reservoir. This study on the climatic classification is considered to be useful as the basis for decision-making or policy enforcement regarding ecosystem, environmental management or climate change response.

Estimation of unused forest biomass potential resource amount in Korea

  • Sangho Yun;Sung-Min Choi;Joon-Woo Lee;Sung-Min Park
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.2
    • /
    • pp.317-330
    • /
    • 2022
  • Recently, the policy regarding climate change in Korea and overseas has been to promote the utilization of forest biomass to achieve net zero emissions. In addition, with the implementation of the unused forest biomass system in 2018, the size of the Korean market for manufacturing wood pellets and wood chips using unused forest biomass is rapidly expanding. Therefore, it is necessary to estimate the total amount of unused forest biomass that can be used as an energy source and to identify the capacity that can be continuously produced annually. In this study, we estimated the actual forest area that can be produced of logging residue and the potential amount of unused forest biomass resources based on GT (green ton). Using a forest functions classification map (1 : 25,000), 5th digital forest type map (1 : 25,000), and digital elevation model (DEM), the forest area with a slope of 30° or less and mountain ridges of 70% or less was estimated based on production forest and IV age class or more. The total forest area where unused forest biomass can be produced was estimated to be 1,453,047 ha. Based on GT, the total amount of unused forest biomass potential resources in Korea was estimated to be 117,741,436 tons. By forest type, coniferous forests were estimated to be 48,513,580 tons (41.2%), broad-leaved forests 27,419,391 tons (23.3%), and mixed forests 41,808,465 tons (35.5%). Data from this research analysis can be used as basic data to estimate commercial use of unused forest biomass.

Parameterization and Application of a Forest Landscape Model by Using National Forest Inventory and Long Term Ecological Research Data (국가산림자원조사와 장기생태연구 자료를 활용한 산림경관모형의 모수화 및 적용성 평가)

  • Cho, Wonhee;Lim, Wontaek;Kim, Eun-Sook;Lim, Jong-Hwan;Ko, Dongwook W.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.3
    • /
    • pp.215-231
    • /
    • 2020
  • Forest landscape models (FLMs) can be used to investigate the complex interactions of various ecological processes and patterns, which makes them useful tools to evaluate how environmental and anthropogenic variables can influence forest ecosystems. However, due to the large spatio-temporal scales in FLMs studies, parameterization and validation can be extremely challenging when applying to new study areas. To address this issue, we focused on the parameterization and application of a spatially explicit forest landscape model, LANDIS-II, to Mt. Gyebang, South Korea, with the use of the National Forest Inventory (NFI) and long-term ecological research (LTER) site data. In this study, we present the followings for the biomass succession extension of LANDIS-II: 1) species-specific and spatial parameters estimation for the biomass succession extension of LANDIS-II, 2) calibration, and 3) application and validation for Mt. Gyebang. For the biomass succession extension, we selected 14 tree species, and parameterized ecoregion map, initial community map, species growth characteristics. We produced ecoregion map using elevation, aspect, and topographic wetness index based on digital elevation model. Initial community map was produced based on NFI and sub-alpine survey data. Tree species growth parameters, such as aboveground net primary production and maximum aboveground biomass, were estimated from PnET-II model based on species physiological factors and environmental variables. Literature data were used to estimate species physiological factors, such as FolN, SLWmax, HalfSat, growing temperature, and shade tolerance. For calibration and validation purposes, we compared species-specific aboveground biomass of model outputs and NFI and sub-alpine survey data and calculated coefficient of determination (R2) and root mean square error (RMSE). The final model performed very well, with 0. 98 R2 and 8. 9 RMSE. This study can serve as a foundation for the use of FLMs to other applications such as comparing alternative forest management scenarios and natural disturbance effects.

Visualizing the Results of Opinion Mining from Social Media Contents: Case Study of a Noodle Company (소셜미디어 콘텐츠의 오피니언 마이닝결과 시각화: N라면 사례 분석 연구)

  • Kim, Yoosin;Kwon, Do Young;Jeong, Seung Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.89-105
    • /
    • 2014
  • After emergence of Internet, social media with highly interactive Web 2.0 applications has provided very user friendly means for consumers and companies to communicate with each other. Users have routinely published contents involving their opinions and interests in social media such as blogs, forums, chatting rooms, and discussion boards, and the contents are released real-time in the Internet. For that reason, many researchers and marketers regard social media contents as the source of information for business analytics to develop business insights, and many studies have reported results on mining business intelligence from Social media content. In particular, opinion mining and sentiment analysis, as a technique to extract, classify, understand, and assess the opinions implicit in text contents, are frequently applied into social media content analysis because it emphasizes determining sentiment polarity and extracting authors' opinions. A number of frameworks, methods, techniques and tools have been presented by these researchers. However, we have found some weaknesses from their methods which are often technically complicated and are not sufficiently user-friendly for helping business decisions and planning. In this study, we attempted to formulate a more comprehensive and practical approach to conduct opinion mining with visual deliverables. First, we described the entire cycle of practical opinion mining using Social media content from the initial data gathering stage to the final presentation session. Our proposed approach to opinion mining consists of four phases: collecting, qualifying, analyzing, and visualizing. In the first phase, analysts have to choose target social media. Each target media requires different ways for analysts to gain access. There are open-API, searching tools, DB2DB interface, purchasing contents, and so son. Second phase is pre-processing to generate useful materials for meaningful analysis. If we do not remove garbage data, results of social media analysis will not provide meaningful and useful business insights. To clean social media data, natural language processing techniques should be applied. The next step is the opinion mining phase where the cleansed social media content set is to be analyzed. The qualified data set includes not only user-generated contents but also content identification information such as creation date, author name, user id, content id, hit counts, review or reply, favorite, etc. Depending on the purpose of the analysis, researchers or data analysts can select a suitable mining tool. Topic extraction and buzz analysis are usually related to market trends analysis, while sentiment analysis is utilized to conduct reputation analysis. There are also various applications, such as stock prediction, product recommendation, sales forecasting, and so on. The last phase is visualization and presentation of analysis results. The major focus and purpose of this phase are to explain results of analysis and help users to comprehend its meaning. Therefore, to the extent possible, deliverables from this phase should be made simple, clear and easy to understand, rather than complex and flashy. To illustrate our approach, we conducted a case study on a leading Korean instant noodle company. We targeted the leading company, NS Food, with 66.5% of market share; the firm has kept No. 1 position in the Korean "Ramen" business for several decades. We collected a total of 11,869 pieces of contents including blogs, forum contents and news articles. After collecting social media content data, we generated instant noodle business specific language resources for data manipulation and analysis using natural language processing. In addition, we tried to classify contents in more detail categories such as marketing features, environment, reputation, etc. In those phase, we used free ware software programs such as TM, KoNLP, ggplot2 and plyr packages in R project. As the result, we presented several useful visualization outputs like domain specific lexicons, volume and sentiment graphs, topic word cloud, heat maps, valence tree map, and other visualized images to provide vivid, full-colored examples using open library software packages of the R project. Business actors can quickly detect areas by a swift glance that are weak, strong, positive, negative, quiet or loud. Heat map is able to explain movement of sentiment or volume in categories and time matrix which shows density of color on time periods. Valence tree map, one of the most comprehensive and holistic visualization models, should be very helpful for analysts and decision makers to quickly understand the "big picture" business situation with a hierarchical structure since tree-map can present buzz volume and sentiment with a visualized result in a certain period. This case study offers real-world business insights from market sensing which would demonstrate to practical-minded business users how they can use these types of results for timely decision making in response to on-going changes in the market. We believe our approach can provide practical and reliable guide to opinion mining with visualized results that are immediately useful, not just in food industry but in other industries as well.

Building a Model for Estimate the Soil Organic Carbon Using Decision Tree Algorithm (의사결정나무를 이용한 토양유기탄소 추정 모델 제작)

  • Yoo, Su-Hong;Heo, Joon;Jung, Jae-Hoon;Han, Su-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.3
    • /
    • pp.29-35
    • /
    • 2010
  • Soil organic carbon (SOC), being a help to forest formation and control of carbon dioxide in the air, is found to be an important factor by which global warming is influenced. Excavating the samples by whole area is very inefficient method to discovering the distribution of SOC. So, the development of suitable model for expecting the relative amount of the SOC makes better use of expecting the SOC. In the present study, a model based on a decision tree algorithm is introduced to estimate the amount of SOC along with accessing influencing factors such as altitude, aspect, slope and type of trees. The model was applied to a real site and validated by 10-fold cross validation using two softwares, See 5 and Weka. From the results given by See 5, it can be concluded that the amount of SOC in surface layers is highly related to the type of trees, while it is, in middle depth layers, dominated by both type of trees and altitude. The estimation accuracy was rated as 70.8% in surface layers and 64.7% in middle depth layers. A similar result was, in surface layers, given by Weka, but aspect was, in middle depth layers, found to be a meaningful factor along with types of trees and altitude. The estimation accuracy was rated as 68.87% and 60.65% in surface and middle depth layers. The introduced model is, from the tests, conceived to be useful to estimation of SOC amount and its application to SOC map production for wide areas.