• Title/Summary/Keyword: tree classification

Search Result 938, Processing Time 0.026 seconds

TREE FORM CLASSIFICATION OF OWNER PAYMENT BEHAVIOUR

  • Hanh Tran;David G. Carmichael;Maria C. A. Balatbat
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.526-533
    • /
    • 2011
  • Contracting is said to be a high-risk business, and a common cause of business failure is related to cash management. A contractor's financial viability depends heavily on how actual payments from an owner deviate from those defined in the contract. The paper presents a method for contractors to evaluate the punctuality and fullness of owner payments based on historical behaviour. It does this by classifying owners according to their late and incomplete payment practices. A payment profile of an owner, in the form of aging claims submitted by the contractor, is used as a basis for the method's development. Regression trees are constructed based on three predictor variables, namely, the average time to payment following a claim, the total amount ending up being paid within a certain period and the level of variability in claim response times. The Tree package in the publicly available R program is used for building the trees. The analysis is particularly useful for contractors at the pre-tendering stage, when contractors predict the likely payment scenario in an upcoming project. Based on the method, the contractor can decide whether to tender or not tender, or adjust its financial preparations accordingly. The paper is a contribution in risk management applied to claim and dispute resolution practice. It is argued that by contractors having a better understanding of owner payment behaviour, fewer disputes and contractor business failures will occur.

  • PDF

A Study on the Combined Decision Tree(C4.5) and Neural Network Algorithm for Classification of Mobile Telecommunication Customer (이동통신고객 분류를 위한 의사결정나무(C4.5)와 신경망 결합 알고리즘에 관한 연구)

  • 이극노;이홍철
    • Journal of Intelligence and Information Systems
    • /
    • v.9 no.1
    • /
    • pp.139-155
    • /
    • 2003
  • This paper presents the new methodology of analyzing and classifying patterns of customers in mobile telecommunication market to enhance the performance of predicting the credit information based on the decision tree and neural network. With the application of variance selection process from decision tree, the systemic process of defining input vector's value and the rule generation were developed. In point of customer management, this research analyzes current customers and produces the patterns of them so that the company can maintain good customer relationship and makes special management on the customer who has huh potential of getting out of contract in advance. The real implementation of proposed method shows that the predicted accuracy is higher than existing methods such as decision tree(CART, C4.5), regression, neural network and combined model(CART and NN).

  • PDF

Incomplete data handling technique using decision trees (결정트리를 이용하는 불완전한 데이터 처리기법)

  • Lee, Jong Chan
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.8
    • /
    • pp.39-45
    • /
    • 2021
  • This paper discusses how to handle incomplete data including missing values. Optimally processing the missing value means obtaining an estimate that is the closest to the original value from the information contained in the training data, and replacing the missing value with this value. The way to achieve this is to use a decision tree that is completed in the process of classifying information by the classifier. In other words, this decision tree is obtained in the process of learning by inputting only complete information that does not include loss values among all training data into the C4.5 classifier. The nodes of this decision tree have classification variable information, and the higher node closer to the root contains more information, and the leaf node forms a classification region through a path from the root. In addition, the average of classified data events is recorded in each region. Events including the missing value are input to this decision tree, and the region closest to the event is searched through a traversal process according to the information of each node. The average value recorded in this area is regarded as an estimate of the missing value, and the compensation process is completed.

A Study on Obtaining Tree Data from Green Spaces in Parks Using Unmanned Aerial Vehicle Images: Focusing on Mureung Park in Chuncheon

  • Lee, Do-Hyung;Kil, Sung-Ho;Lee, Su-Been
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.4
    • /
    • pp.441-450
    • /
    • 2021
  • Background and objective: The purpose of study is to analyze the three-dimensional (3D) structure by creating a 3D model for green spaces in a park using unmanned aerial vehicle (UAV) images. Methods: After producing a digital surface model (DSM) and a digital terrain model (DTM) using UAV images taken in Mureung Park in Chuncheon-si, we generated a digital tree height model (DHM). In addition, we used the mean shift algorithm to test the classification accuracy, and obtain accurate tree height and volume measures through field survey. Results: Most of the tree species planted in Mureung Park were Pinus koraiensis, followed by Pinus densiflora, and Zelkova serrata, and most of the shrubs planted were Rhododendron yedoense, followed by Buxus microphylla, and Spiraea prunifolia. The average height of trees measured at the site was 7.8 m, and the average height estimated by the model was 7.5 m, showing a difference of about 0.3 m. As a result of the t-test, there was no significant difference between height values of the field survey data and the model. The estimated green coverage and volume of the study site using the UAV were 5,019 m2 and 14,897 m3, respectively, and the green coverage and volume measured through the field survey were 6,339 m2 and 17,167 m3. It was analyzed that the green coverage showed a difference of about 21% and the volume showed a difference of about 13%. Conclusion: The UAV equipped with RTK (Real-Time Kinematic) and GNSS (Global Navigation Satellite System) modules used in this study could collect information on tree height, green coverage, and volume with relatively high accuracy within a short period of time. This could serve as an alternative to overcome the limitations of time and cost in previous field surveys using remote sensing techniques.

A Combinatorial Optimization for Influential Factor Analysis: a Case Study of Political Preference in Korea

  • Yun, Sung Bum;Yoon, Sanghyun;Heo, Joon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.5
    • /
    • pp.415-422
    • /
    • 2017
  • Finding influential factors from given clustering result is a typical data science problem. Genetic Algorithm based method is proposed to derive influential factors and its performance is compared with two conventional methods, Classification and Regression Tree (CART) and Chi-Squared Automatic Interaction Detection (CHAID), by using Dunn's index measure. To extract the influential factors of preference towards political parties in South Korea, the vote result of $18^{th}$ presidential election and 'Demographic', 'Health and Welfare', 'Economic' and 'Business' related data were used. Based on the analysis, reverse engineering was implemented. Implementation of reverse engineering based approach for influential factor analysis can provide new set of influential variables which can present new insight towards the data mining field.

Analysis of the Timing of Spoken Korean Using a Classification and Regression Tree (CART) Model

  • Chung, Hyun-Song;Huckvale, Mark
    • Speech Sciences
    • /
    • v.8 no.1
    • /
    • pp.77-91
    • /
    • 2001
  • This paper investigates the timing of Korean spoken in a news-reading speech style in order to improve the naturalness of durations used in Korean speech synthesis. Each segment in a corpus of 671 read sentences was annotated with 69 segmental and prosodic features so that the measured duration could be correlated with the context in which it occurred. A CART model based on the features showed a correlation coefficient of 0.79 with an RMSE (root mean squared prediction error) of 23 ms between actual and predicted durations in reserved test data. These results are comparable with recent published results in Korean and similar to results found in other languages. An analysis of the classification tree shows that phrasal structure has the greatest effect on the segment duration, followed by syllable structure and the manner features of surrounding segments. The place features of surrounding segments only have small effects. The model has application in Korean speech synthesis systems.

  • PDF

Development of Traffic Accident Models in Seoul Considering Land Use Characteristics (토지이용특성을 고려한 서울시 교통사고 발생 모형 개발)

  • Lim, Samjin;Park, Juntae
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.1
    • /
    • pp.30-49
    • /
    • 2013
  • In this research we developed a new traffic accident forecasting model on the basis of land use. A new traffic accident forecasting model by type was developed based on market segmentation and further introduction of variables that may reflect characteristics of various regions using Classification and Regression Tree Method. From the results of analysis, activities variables such as the registered population, commuters as well as road size, traffic accidents causing facilities being the subjects of activities were derived as variables explaining traffic accidents.

Optimum seismic design of reinforced concrete frame structures

  • Gharehbaghi, Sadjad;Moustafa, Abbas;Salajegheh, Eysa
    • Computers and Concrete
    • /
    • v.17 no.6
    • /
    • pp.761-786
    • /
    • 2016
  • This paper proposes an automated procedure for optimum seismic design of reinforced concrete (RC) frame structures. This procedure combines a smart pre-processing using a Tree Classification Method (TCM) and a nonlinear optimization technique. First, the TCM automatically creates sections database and assigns sections to structural members. Subsequently, a real valued model of Particle Swarm Optimization (PSO) algorithm is employed in solving the optimization problem. Numerical examples on design optimization of three low- to high-rise RC frame structures under earthquake loads are presented with and without considering strong column-weak beam (SCWB) constraint. Results demonstrate the effectiveness of the TCMin seismic design optimization of the structures.

The Evaluation of a Plastic Material Classification System using Near Field IR (NIR) Spectrum and Decision Tree based Machine Learning (Near Field IR (NIR) 스펙트럼 및 결정 트리 기반 기계학습을 이용한 플라스틱 재질 분류 시스템)

  • Kook, Joongjin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.92-97
    • /
    • 2022
  • Plastics are classified into 7 types such as PET (PETE), HDPE, PVC, LDPE, PP, PS, and Other for separation and recycling. Recently, large corporations advocating ESG management are replacing them with bioplastics. Incineration and landfill of disposal of plastic waste are responsible for air pollution and destruction of the ecosystem. Because it is not easy to accurately classify plastic materials with the naked eye, automated system-based screening studies using various sensor technologies and AI-based software technologies have been conducted. In this paper, NIR scanning devices considering the NIR wavelength characteristics that appear differently for each plastic material and a system that can identify the type of plastic by learning the NIR spectrum data collected through it. The accuracy of plastic material identification was evaluated through a decision tree-based SVM model for multiclass classification on NIR spectral datasets for 8 types of plastic samples including biodegradable plastic.

Anomaly detection and attack type classification mechanism using Extra Tree and ANN (Extra Tree와 ANN을 활용한 이상 탐지 및 공격 유형 분류 메커니즘)

  • Kim, Min-Gyu;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.23 no.5
    • /
    • pp.79-85
    • /
    • 2022
  • Anomaly detection is a method to detect and block abnormal data flows in general users' data sets. The previously known method is a method of detecting and defending an attack based on a signature using the signature of an already known attack. This has the advantage of a low false positive rate, but the problem is that it is very vulnerable to a zero-day vulnerability attack or a modified attack. However, in the case of anomaly detection, there is a disadvantage that the false positive rate is high, but it has the advantage of being able to identify, detect, and block zero-day vulnerability attacks or modified attacks, so related studies are being actively conducted. In this study, we want to deal with these anomaly detection mechanisms, and we propose a new mechanism that performs both anomaly detection and classification while supplementing the high false positive rate mentioned above. In this study, the experiment was conducted with five configurations considering the characteristics of various algorithms. As a result, the model showing the best accuracy was proposed as the result of this study. After detecting an attack by applying the Extra Tree and Three-layer ANN at the same time, the attack type is classified using the Extra Tree for the classified attack data. In this study, verification was performed on the NSL-KDD data set, and the accuracy was 99.8%, 99.1%, 98.9%, 98.7%, and 97.9% for Normal, Dos, Probe, U2R, and R2L, respectively. This configuration showed superior performance compared to other models.