• Title/Summary/Keyword: tree canopy

Search Result 229, Processing Time 0.028 seconds

Estimation of Stand-level Above Ground Biomass in Intact Tropical Rain Forests of Brunei using Airborne LiDAR data (항공 LiDAR 자료를 이용한 브루나이 열대우림의 임분단위 지상부 생체량 추정)

  • Yoon, Mihae;Kim, Eunji;Kwak, Doo-Ahn;Lee, Woo-Kyun;Lee, Jong-Yeol;Kim, Moon-Il;Lee, Sohye;Son, Yowhan;Salim, Kamariah Abu
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.127-136
    • /
    • 2015
  • This study aims to quantify the stand-level above ground biomass in intact tropical rain forest of Brunei using airborne LiDAR data. Twenty four sub-plots with the size of 0.09ha ($30m{\times}30m$) were located in the 25ha study area along the altitudinal gradients. Field investigated data (Diameter at Breast Height (DBH) and individual tree position data) in sub-plots were used. Digital Surface Model (DSM), Digital Terrain Model (DTM) and Canopy Height Model (CHM) were constructed using airborne LiDAR data. CHM was divided into 24 sub-plots and 12 LiDAR height metrics were built. Multiple regression equation between the variables extracted from the LiDAR data and biomass calculated by using a allometric equation was derived. Stand-level biomass estimated from LiDAR data were distributed from 155.81 Mg/ha to 597.21 Mg/ha with the mean value of 366.48 Mg/ha. R-square value of the verification analysis was 0.84.

Forest Structure in Relation to Altitude and Part of Slope in a Valley and a Ridge Forest at Mt. Gaya Area (가야산지역 계곡부와 능선부의 해발고와 사면부위에 따른 삼림구조)

  • 박인협;조재창;오충현
    • Korean Journal of Environment and Ecology
    • /
    • v.3 no.1
    • /
    • pp.42-50
    • /
    • 1989
  • A valley and a ridge forest in Mt. Gaya area was studied to investigate forest structure in relation to altitude and part of slope. Sixty-three quadrats were set up in the valley forest along altitude of 600m to 1,000m and part of slope, and thirty-eight quadrats were set up in the ridge forest along altitude of 700m to 1,430m. According to the importance values, the valley forest was Quercus mongolica-Lespedeza maximowiczii community and the ridge forest was Pinus densiflora, Quercus mongolica-Rhododendron mucronulatum community. Similarity index between the valley forest community and the ridge forest community was 37.2%. Shannon's species diversities of the valley forest community and the ridge forest community were 1.3402 and 1.0098, respectively. According to importance values by crown stories and DCA ordination, successional trends of tree species may be from Pinus densiflora and Pinus koraiensis through Quercus mongolica to Quercus serrata and Carpinus laxiflora. As going from the lower part to upper part of the slope in the valley forest, the importance values of Quercus mongolica, Quercus aliena, Rhododendron mucronulatum and Lespedeza maximowiczii increased while those of Carpinus laxiflora and Fraxinus rhynchophylla decreased. With increasing elevation in the valley and ridge forest, the importance value of Pinus densiflora decreased while that of Quercus mongolica increased. In the valley forest, densities of canopy and shrubstratum increased as increasing elevation, and the number of species and species diversity decreased as increasing elevation and going from the lower part to the upper of slope. The range of similarity indices between parts of the slope, and the elevation belts of 100m in the valley forest were 66.6-69.2 and 25.9-79.8%, respectively. In the ridge forest, density and basal area of canopy tended to decreased as increasing elevation, and the range of similarity indices between elevation belts of 100m was 27.9-98.2%.

  • PDF

Estimation of Leaf Area, Leaf Fresh Weight, and Leaf Dry Weight of Irwin Mango Grown in Greenhouse using Leaf Length, Leaf Width, Petiole Length, and SPAD Value (엽장, 엽폭, 엽병장 및 SPAD 값을 이용한 온실 재배 어윈 망고의 엽면적, 엽생체중과 엽건물중 추정)

  • Jung, Dae Ho;Cho, Young Yeol;Lee, Jun Gu;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.25 no.3
    • /
    • pp.146-152
    • /
    • 2016
  • Due to complicate canopy structures of Irwin mangoes grown in greenhouses, it is difficult to determine their growth parameters accurately. Leaf area, leaf fresh weight, and leaf dry weight are widely used as indicators to diagnose the tree growth. Therefore, it is necessary to establish models that can non-destructively estimate these growth indicators. The objective of this study was to establish regression models to estimate leaf area, leaf fresh weight, and leaf dry weight of Irwin mangoes (Mangifera indica L. cv. Irwin) by using leaf length, leaf width, petiole length, and SPAD value. The input values of leaf length, leaf width, petiole length, and SPAD value of 6-year old Irwin mangoes were measured, and the corresponding output values of leaf area, leaf fresh weight, and leaf dry weight were also measured. After 14 models were selected among the existing models, coefficients of the models were estimated by regression analysis. Three models with higher $R^2$ and lower RMSE values selected. In validation the $R^2$ values for the selected models were 0.967, 0.743, and 0.567 in the leaf area, leaf fresh weight, and leaf dry weight models, respectively. It is concluded that this models will be helpful to conveniently diagnose the growth of the Irwin mango.

Distribution of woody plants and flora of vascular plant in cheonjiyeon valley in Jeju Island (제주도 천지연계곡의 수목분포와 관속식물상)

  • 김찬수;정은주;송관필;김지은;문명옥;강영제;김문홍
    • Korean Journal of Plant Resources
    • /
    • v.15 no.2
    • /
    • pp.114-122
    • /
    • 2002
  • This study investigated the species composition and distribution of woody plants, and flora of vascular plants of Cheonjiyeon where is located in the most southern region of Korea. Twenty-nine taxa of trees were distributed in the valley, and of these, deciduous broad-leaved trees were 13. Of the total number of 2,547 trees, 1,429 were deciduous broad-leaved trees and remainder was broad-leaved evergreen. Deciduous broad-leaved trees covered 48.7% of the tree canopy while evergreen broad-leaved trees covered only 42.3%. The total number of shrub taxa was 37 with more evergreen shrub taxa than deciduous. Evergreen shrubs occupied 64.4% of shrub canopy while deciduous shrubs covered only 35.4%. The result of the investigation of flora showed that there are 446 taxa of flora including 114 families, 320 genera, 397 species, 1 subspecies, 39 varieties, and 9 forma. Of these, two species, Rubus hongnoensis Nakai and Lycoris chejuensis K. Tae et S. Ko, are endemic plants of Jeju Island. The flora includes 17 taxa of rare plants that are distributed only in Jeju Island in Korea. Also, the flora includes 1 taxon, Elaeocarpus sylvestris (Loureiro) Poiret var. ellipticus (Thunb.) Hara, of Korean natural monument, 2 taxa, Psilotum nudum (L.) Griseb. and Crypsinus hastatus (Thunb.) Copeland, of legally protected wildlife and plants, 38 taxa of naturalized plants, and 75 taxa of introduced plants.

Ecological Characteristic and Vegetation Structure of Pinus thunbergii Community in Coastal Forest of Busan Metropolitan City, Korea (부산광역시 해안림 곰솔군락의 식생구조 및 생태적 특성)

  • Shin, Hae-Seon;Lee, Sang-Cheol;Choi, Song-Hyun;Kang, Hyun-Mi
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.5
    • /
    • pp.539-551
    • /
    • 2019
  • The purpose of this study is to understand the vegetation structure and ecological characteristics of the coastal forest Pinus thunbergii community in Busan Metropolitan City (BMC) and to establish reference information for the management of the coastal forest in BMC in the future. We set up 97 plots with an area of $100m^2$ each for the analysis and investigation of the vegetation characteristics. The analysis using the TWINSPAN and DCA techniques found seven community groups: Pinus thunbergii-Quercus aliena community, Pinus thunbergii-Eurya japonica(1) community, Pinus thunbergii-Eurya japonica(2) community, Pinus thunbergii-Quercus serrata community, Pinus thunbergii-Camellia japonica(1) community, Pinus thunbergii-Camellia japonica(2) community, and Pinus thunbergii-Eurya japonica-Camellia japonica community. According to the analysis of vegetation structure, Pinus thunbergii was a main dominant species at the canopy layer in all sites while Eurya japonica and Camellia japonica were dominant species at the understory layer. Pinus thunbergii-Quercus serrata community is predicted in the forest succession because of the competition between Pinus thunbergii and Quercus serrata in the canopy layer and the understory layer. As such, it is necessary to observe changes by continually monitoring this community. Tree species with strong salinity tolerance, including Pinus thunbergii, have formed community groups because of the environmental characteristics of coastal forests, strong with salinity tolerance species are forming community groups. Therefore, all community groups except for the Pinus thunbergii-Quercus serrata community will maintain the current vegetation structure unless drastic environmental changes occur.

The Gradient Variation of Thermal Environments on the Park Woodland Edge in Summer - A Study of Hadongsongrim and Hamyangsangrim - (여름철 공원 수림지 가장자리의 온열환경 기울기 변화 - 하동송림과 함양상림을 대상으로 -)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.6
    • /
    • pp.73-85
    • /
    • 2015
  • This study investigated the extent and magnitude of the woodland edge effects on users' thermal environments according to distance from woodland border. A series of experiments to measure air temperature, relative humidity, wind velocity, MRT and UTCI were conducted over six days between July 31 and August 5, 2015, which corresponded with extremely hot weather, at the south-facing edge of Hadongsongrim(pure Pinus densiflora stands, tree age: $100{\pm}33yr$, tree height: $12.8{\pm}2.7m$, canopy closure: 75%, N $35^{\circ}03^{\prime}34.7^{{\prime}{\prime}}$, E $127^{\circ}44^{\prime}43.3^{{\prime}{\prime}}$, elevation 7~10m) and east-facing edge of Hamyangsangrim (Quercus serrata-Carpinus tschonoskii community, tree age: 102~125yr/58~123yr, tree height: tree layer $18.6{\pm}2.3m/subtree$ layer $5.9{\pm}3.2m/shrub$ layer $0.5{\pm}0.5m$, herbaceous layer coverage ratio 60%, canopy closure: 96%, N $35^{\circ}31^{\prime}28.1^{{\prime}{\prime}}$, E $127^{\circ}43^{\prime}09.8^{{\prime}{\prime}}$, elevation 170~180m) in rural villages of Hadong and Hamyang, Korea. The minus result value of depth means woodland's outside. The depth of edge influence(DEI) on the maximum air temperature, minimum relative humidity and wind speed at maximum air temperature time during the daytime(10:00~17:00) were detected to be $12.7{\pm}4.9$, $15.8{\pm}9.8$ and $23.8{\pm}26.2m$, respectively, in the mature evergreen conifer woodland of Hadongsongrim. These were detected to be $3.7{\pm}2.2$, $4.9{\pm}4.4$ and $2.6{\pm}7.8m$, respectively, in the deciduous broadleaf woodland of Hamyansangrim. The DEI on the maximum 10 minutes average MRT, UTCI from the three-dimensional environment absorbed by the human-biometeorological reference person during the daytime(10:00~17:00) were detected to be $7.1{\pm}1.7$ and $4.3{\pm}4.6m$, respectively, in the relatively sparse woodland of Hadongsongrim. These were detected to be $5.8{\pm}4.9$ and $3.5{\pm}4.1m$, respectively, in the dense and closed woodland of Hadongsongrim. Edge effects on the thermal environments of air temperature, relative humidity, wind speed, MRT and UTCI in the sparse woodland of Hadongsongrim were less pronounced than those recorded in densed and closed woodland of Hamyansangrim. The gradient variation was less steep for maximum 10 minutes average UTCI with at least $4.3{\pm}4.6m$(Hadongsongrim) and $3.5{\pm}4.1m$(Hamyansangrim) being required to stabilize the UTCI at mature woodlands. Therefore it is suggested that the woodlands buffer widths based on the UTCI values should be 3.5~7.6 m(Hamyansangrim) and 4.3~8.9(Hadongsongrim) m on each side of mature woodlands for users' thermal comfort environments. The woodland edge structure should be multi-layered canopies and closed edge for the buffer effect of woodland edge on woodland users' thermal comfort.

A Study on Correlation Between the Growth of Korean Red Pine and Location Environment in Temple Forests in Jeollanam-do, Korea (전남 사찰림에서의 소나무 생육과 입지환경간의 상관관계 연구)

  • Park, Seok-Gon;Hong, Suk-Hwan;Oh, Chan-Jin
    • Korean Journal of Environment and Ecology
    • /
    • v.31 no.4
    • /
    • pp.409-419
    • /
    • 2017
  • Although Korean red pine (Pinus densiflora) forests near temples are valuable as forests of the cultural landscape, they are likely to be deteriorated because of vegetation succession and climate changes. The purpose of this study is to investigate the vegetation structure, the pine vitality, and the site environmental characteristics of the pine forests near temples to identify the correlation between pine tree growth and location environment. We selected Chuneunsa, Wonhyosa, Jeungsimsa, and Taeansa Temples since these four areas still had the healthy pine forests. In all four studied area, the pine trees dominate the canopy layers while the deciduous broadleaf trees mostly inhabited appeared in the lower layers. The growth of pine trees in Jeungsimsa and Wonhyosa areas was not as good as Chuneunsa area where the pine trees tended to be older. We found higher total nitrogen content in soil in Jeungsimsa area than other areas, maybe because of increase in total nitrogen caused by the development of low vegetation in the area. This peculiarity may have led to the pine trees in the area to fall behind the deciduous broadleaf trees in competition for nitrogen nutrient and thus to show deteriorated growth. The altitude and the twig length showed a negative correlation as did the degree of slope and the mean importance percentage of the pine tree. In other words, the growth environment such as soil became poorer when the altitude and the degree of slope increased, and thus the growth amount and dominance of the pine trees were lower. The degree of slope showed a positive correlation with the twig length of the pine tree. Within boundaries of location environment where the pine tree forests were dominant, it seemed that growth of the pine trees was more favorable as the slope was steeper because the trees could avoid competition with deciduous broadleaf trees. On the other hand, the growth of pine trees deteriorated as the electrical conductivity of soil increased; increase in soil nutrients might have accelerated vegetation development of deciduous broadleaf trees and thus aggravated the growth environment of pine trees to negatively affect maintaining the health of the pine tree forests.

Vegetation Succession and Vegetation Management of the Pinus densiflora S. et Z. Forest in the Beopjusa Area, Songnisan National $Park^{1a}$ (속리산국립공원 법주사지구 소나무림 식생천이와 식생관리 연구)

  • Lee, Kyong-Jae;Ki, Kyong-Seok;Choi, Jin-Woo
    • Korean Journal of Environment and Ecology
    • /
    • v.23 no.2
    • /
    • pp.208-219
    • /
    • 2009
  • This study is to establish a management method for conservation through comparison and analysis on vegetation structures of Pinus densiflora forest around Beopjusa area for past 17-year. The spatial range of the study was $3.6km^2$ from maintenance office to Beopjusa area. The analysis results of the actual vegetation showed that the ratio of vegetation were composed of 64.7% of Pinus densiflora forest, 3.2% of mixed forest of P. densiflora and deciduous broadleaf trees and 5.9% of deciduous broadleaf tree community out of overall area, 360ha. The type of P. densiflora forest were categorized into four communities; community having high potential of succession, community having low potential of it, the community being in the process of succession and community being in the process of natural selection. The succession tendency was in order of the community having low potential of succession(P. densiflora forest), having high potential of it(P. densiflora forest which is deciduous broadleaf trees are dominating in sub-canopy layer), being in the process of succession(P. densiflora-Prunus sargentii and P. densiflora-Quercus serrata community) and being in the process of natural selection(Q. serrata-P. densiflora and Q. aliena-P. densiflora community). In terms of vegetation management, P. densiflora forest having high potential of succession was needed to remove deciduous broadleaf trees in the sub-canopy layer and the community being in the process of succession was required to be pruning the branch in the canopy layer. Lastly, the community being in the process of natural selection was suggested to let it be in succession, since it is hard to be in the status of P. densiflora Forest.

The Plant Community Structure of Pinus densiflorain Forest in Chuwangsan National Park (주왕산국립공원의 소나무림 군집구조)

  • Jo, Jae-Chang;Cho, Woo;Han, Bong-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.8 no.2
    • /
    • pp.121-134
    • /
    • 1995
  • To investigate the plant community structure in Pinus densiflora forest of Chuwangsan National Park, twenty five plots were set up and surveryed. The classification by TWINSPAN and DCA ordination techniques were applied to the study area. The plant community were divided into five groups in twenty five plots by DCA and the dividing groups were Pinus densiflora-Quercus variabilis community(I), P. densiflora-Q. serrata community(II), P. densiflora-Fraxinus sieboldiana community(III), P. densiflora-F. sieboldiana-Q. spp. community(IV) and P. densiflora-mixed deciduous forest community(V). The successional trends of tree species by DCA ordination techniques and DBH class distribution analysis seems to be from P. densiflora through Q. mongolica, Q. serrata to Carpinus laxiflora in the canopy layer group. And in the subtree and shrub layer, it was expected that Lespedeza maximowiczii, L. cytobotrya, Rhododendron mucronulatumlongrightarrowStyrax obassia, Stephandra insisa, Zanthoxylum schinifolimlongrightarrowAcer pseudo-sieboldianum, Lindera obtusiloba. There was no difference between the stand scores of DCA and soil pH, and soil moisture.

  • PDF

Altitudinal Vegetation Structure of Sunginbong in Ullungdo(Island) (울릉도 성인봉지역의 해발고별 식생구조)

  • 최송현;이경재;김종엽
    • Korean Journal of Environment and Ecology
    • /
    • v.12 no.3
    • /
    • pp.290-296
    • /
    • 1998
  • Altitudinal changes in the vegetation of Sunginbong(984m) in UIlungdo (Island) were investigated by sample plots(forty l00$\m^2$) along elevation and analyzed by TWINSPAN and DCA techniques. In the results from the analysis of both techniques, altitudinal zonations were divided into 3 groups such as lower 300m area, 400~700m area, and above 800m area. DCA and similarity index analyses of elevational ranges showed discontinuities between lower and middle elevation areas. But there was a vegetation continuum between middle and high elevation areas. In the analysis of species diversity, there was no significant difference due to altitude except for maximum species diversity which was decreased with altitude. The mean tree density of canopy and understory layers in the middle elevation area showed the highest value, and the highest basal area was recorded at the lower elevation area.

  • PDF