DOI QR코드

DOI QR Code

Estimation of Stand-level Above Ground Biomass in Intact Tropical Rain Forests of Brunei using Airborne LiDAR data

항공 LiDAR 자료를 이용한 브루나이 열대우림의 임분단위 지상부 생체량 추정

  • Yoon, Mihae (Division of Environment Science and Ecological Engineering, Korea University) ;
  • Kim, Eunji (Department of Climate Environment, Graduate School of Life & Environmental Sciences, Korea University) ;
  • Kwak, Doo-Ahn (Korea Forest Conservation Association) ;
  • Lee, Woo-Kyun (Division of Environment Science and Ecological Engineering, Korea University) ;
  • Lee, Jong-Yeol (Division of Environment Science and Ecological Engineering, Korea University) ;
  • Kim, Moon-Il (Division of Environment Science and Ecological Engineering, Korea University) ;
  • Lee, Sohye (Division of Environment Science and Ecological Engineering, Korea University) ;
  • Son, Yowhan (Division of Environment Science and Ecological Engineering, Korea University) ;
  • Salim, Kamariah Abu (Biology Department, Kuala Belalong Field Studies Centre, Universiti Brunei Darussalam)
  • 윤미해 (고려대학교 환경생태공학과) ;
  • 김은지 (고려대학교 기후환경학과) ;
  • 곽두안 (한국산지보전협회) ;
  • 이우균 (고려대학교 환경생태공학과) ;
  • 이종열 (고려대학교 환경생태공학과) ;
  • 김문일 (고려대학교 환경생태공학과) ;
  • 이소혜 (고려대학교 환경생태공학과) ;
  • 손요환 (고려대학교 환경생태공학과) ;
  • Received : 2014.10.20
  • Accepted : 2015.02.13
  • Published : 2015.04.30

Abstract

This study aims to quantify the stand-level above ground biomass in intact tropical rain forest of Brunei using airborne LiDAR data. Twenty four sub-plots with the size of 0.09ha ($30m{\times}30m$) were located in the 25ha study area along the altitudinal gradients. Field investigated data (Diameter at Breast Height (DBH) and individual tree position data) in sub-plots were used. Digital Surface Model (DSM), Digital Terrain Model (DTM) and Canopy Height Model (CHM) were constructed using airborne LiDAR data. CHM was divided into 24 sub-plots and 12 LiDAR height metrics were built. Multiple regression equation between the variables extracted from the LiDAR data and biomass calculated by using a allometric equation was derived. Stand-level biomass estimated from LiDAR data were distributed from 155.81 Mg/ha to 597.21 Mg/ha with the mean value of 366.48 Mg/ha. R-square value of the verification analysis was 0.84.

본 연구는 항공 LiDAR 자료를 이용하여 열대원시림인 브루나이 지역의 지상부 생체량을 정량화하기 위하여 수행되었다. 25ha 크기의 연구대상지에 0.09ha ($30m{\times}30m$) 크기의 24개의 표본구 내에서 조사된 각 표본점 내 개체목의 흉고직경 및 위치자료를 활용하였다. 또한, 항공 LiDAR 자료를 이용하여 수치표면모델(Digital Surface Model), 수치지형모델(Digital Terrain Model), 수고모델(Canopy Height Model)을 구축하였다. 수고모델을 표본구단위로 분할하고 총 12개의 LiDAR 높이변수를 구축하였다. 표본구별로 상대생장식을 이용하여 계산된 생체량과 LiDAR 자료로부터 추출된 변수간의 다중회귀분석을 통해 LiDAR 자료로부터 생체량을 추정할 수 있는 식을 도출하였다. 표본구의 생체량은 평균 366.48 Mg/ha였으며, 155.81 Mg/ha부터 597.21 Mg/ha까지 분포하였다. LiDAR로부터 생체량을 추정하는 식의 검증 결과, 결정계수 값은 0.84로 나타났다.

Keywords

References

  1. Anderson, J.A.R. and D. Marsden, 1984. Brunei forest resources and strategic planning study, The forest resources of Negara Brunei Darussalam. Brunei.
  2. Asner, G.P., J. Mascaro, H.C. Muller-Landau, G. Vieilledent, R. Vaudry, M. Rasamoelina, J.S. Hall, M. van Breugel, 2012. A universal airborne LiDAR approach for tropical forest carbon mapping, Oecologia, 168(4): 1147-1160. https://doi.org/10.1007/s00442-011-2165-z
  3. Banin, L., T.R. Feldpausch, O.L. Phillips, T.R. Baker, J. Lloyd, K. Affum-Baffoe, and S.L. Lewis, 2012. What controls tropical forest architecture? Testing environmental, structural and floristic drivers, Global Ecology and Biogeography, 21(12): 1179-1190. https://doi.org/10.1111/j.1466-8238.2012.00778.x
  4. Blair, J.B., D.L. Rabine, and M.A. Hofton, 1999. The laser vegetation imaging sensor: A mediumaltitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography, ISPRS Journal of Photogrammetry and Remote Sensing, 54(2): 115-122. https://doi.org/10.1016/S0924-2716(99)00002-7
  5. Budiharta, S., F. Slik, N. Raes, E. Meijaard, P.D. Erskine, and K.A. Wilson, 2014. Estimating the aboveground biomass of Bornean forest, Biotropica, 46(5): 507-511. https://doi.org/10.1111/btp.12132
  6. Clark, D.B. and D.A. Clark, 2000. Landscape-scale variation in forest structure and biomass in a tropical rain forest, Forest ecology and management, 137(1): 185-198. https://doi.org/10.1016/S0378-1127(99)00327-8
  7. Clark, M.L., D.A. Roberts, J.J. Ewel, and D.B. Clark, 2011. Estimation of tropical rain forest aboveground biomass with small-footprint lidar and hyperspectral sensors, Remote Sensing of Environment, 115(11): 2931-2942. https://doi.org/10.1016/j.rse.2010.08.029
  8. Drake, J.B., R.G. Knox, R.O. Dubayah, D.B. Clark, R. Condit, J.B. Blair, and M. Hofton, 2003. Aboveground biomass estimation in closed canopy neotropical forests using LiDAR remote sensing: Factors affecting the generality of relationships, Global Ecology and Biogeography, 12(2): 147-159. https://doi.org/10.1046/j.1466-822X.2003.00010.x
  9. Dubayah, R.O., S.L. Sheldon, D.B. Clark, M.A. Hofton, J.B. Blair, G.C. Hurtt, and R.L. Chazdon, 2010. Estimation of tropical forest height and biomass dynamics using lidar remote sensing at La Selva, Costa Rica, Journal of Geophysical Research: Biogeosciences (2005-2012), 115:G2.
  10. Dykes, A.P., 2000. Climatic patterns in a tropical rainforest in Brunei, The Geographical Journal, 166(1): 63-80. https://doi.org/10.1111/j.1475-4959.2000.tb00007.x
  11. Fassnacht, F.E., F. Hartig, H. Latifi, C. Berger, J. Hernandez, P. Corvalan, and B. Koch, 2014. Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass, Remote Sensing of Environment, 154: 102-114. https://doi.org/10.1016/j.rse.2014.07.028
  12. Feldpausch, T.R., L. Banin, O.L. Phillips, T.R. Baker, S.L. Lewis, C.A. Quesada, and G. Lopez-Gonzalez, 2011. Height-diameter allometry of tropical forest trees, Biogeosciences, 8(5): 1081-1106. https://doi.org/10.5194/bg-8-1081-2011
  13. Feldpausch, T.R., J. Lloyd, S.L. Lewis, R.J.W. Brienen, E. Gloor, A.M. Mendoza, and T.R. Baker, 2012. Tree height integrated into pan-tropical forest biomass estimates, Biogeosciences Discussions, 9(3): 2567-2622. https://doi.org/10.5194/bgd-9-2567-2012
  14. Food and Agriculture Organization of the United Nations (FAO), 2007. Brief on National Forest Inventory (NFI) Brunei Darussalam Forest, Strenghten Monitoring, Assessment and Reporting on Sustatinable Forest Management Working Paper, FAO, Rome.
  15. Food and Agriculture Organization of the United Nations (FAO), 2010. Global Forest Resources Assessment 2010, Country report, Brunei Darussalam, FAO, Rome.
  16. Food and Agriculture Organization of the United Nations (FAO), 2011. Assessing forest degradation, Forest Resources Assessment Working Paper, FAO, Rome.
  17. Grainger, A. and M. Obersteiner, 2011. A framework for structuring the global forest monitoring landscape in the REDD+ era, Environmental Science and Policy, 14(2): 127-139. https://doi.org/10.1016/j.envsci.2010.10.006
  18. Harris, N.L., S. Brown, S.C. Hagen, S.S. Saatchi, S. Petrova, W. Salas, and A. Lotsch, 2012. Baseline map of carbon emissions from deforestation in tropical regions, Science, 336(6088): 1573-1576. https://doi.org/10.1126/science.1217962
  19. Hoshizaki, K., K. Niiyama, K. Kimura, T. Yamashita, Y. Bekku, T. Okuda, E.S. Quah, and N.S.M. Noor, 2004. Temporal and spatial variation of forest biomass in relation to stand dynamics in a mature, lowland tropical rainforest, Malaysia, Ecological Research, 19(3): 357-363. https://doi.org/10.1111/j.1440-1703.2004.00645.x
  20. Kim, E.Y., G.J. Wei, H.M. Cho, and I.T. Yang, 2010. A Study for forest research using airborne laser scanning, Korean Society of Surveying Geodesy, Photogrammetry and Cartography, 28(3): 299-304.
  21. Kwak, D.A., 2010. Estimation of tree-specific parameters based on individual tree-and plotlevel using airborne LiDAR data, Ph. D. Dissertation, Department of Environment Science and Ecological Engineering Graduate School, Korea University.
  22. Kwak, D.A., W.K. Lee, and M.H. Son, 2005. Application of LiDAR for measuring individual trees and Forest Stands, Journal of Korean Forestry Society, 94(6): 431-440.
  23. Kwak, D.A., W.K. Lee, J.H. Lee, G.S. Biging, and P. Gong, 2007. Detection of individual trees and estimation of tree height using LiDAR data, Journal of Forest Research, 12(6): 425-434. https://doi.org/10.1007/s10310-007-0041-9
  24. Kwak, D.A., G. Cui, W.K. Lee, H.K. Cho, S.W. Jeon, and S.H. Lee, 2014. Estimating plot volume using LiDAR height and intensity distributional parameters, International Journal of Remote Sensing, 35(13): 4601-4629. https://doi.org/10.1080/01431161.2014.915592
  25. Laurin, G.V., Q. Chen, J.A. Lindsell, D.A. Coomes, F. Del Frate, L. Guerriero, F. Pirottig, and R. Valentini, 2014. Above ground biomass estimation in an African tropical forest with lidar and hyperspectral data, ISPRS Journal of Photogrammetry and Remote Sensing, 89: 49-58. https://doi.org/10.1016/j.isprsjprs.2014.01.001
  26. Lee, S.B., 2008. Application of Hyperspectral Image Data for Vegetation Analysis, Korea Environment Institute.
  27. Lefsky, M.A., W.B. Cohen, S.A. Acker, G.G. Parker, T.A. Spies, and D.J. Harding, 1999. LiDAR remote sensing of the canopy structure and biophysical properties of douglas-fir western hemlock forests, Remote Sensing of Environment, 70(3): 339-361. https://doi.org/10.1016/S0034-4257(99)00052-8
  28. Lefsky, M.A., W.B. Cohen, G.G. Parker, and D.J. Harding, 2002. LiDAR remote sensing for ecosystem studies LiDAR, an emerging remote sensing technology that directly measures the three-dimensional distribution of plant canopies, can accurately estimate vegetation structural attributes and should be of particular interest to forest, landscape, and global ecologists, BioScience, 52(1): 19-30. https://doi.org/10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2
  29. Means, J.E., S.A. Acker, D.J. Harding, J.B. Blair, M.A. Lefsky, W.B. Cohen, and W.A. McKee, 1999. Use of large-footprint scanning airborne LiDAR to estimate forest stand characteristics in the Western Cascades of Oregon, Remote Sensing of Environment, 67(3): 298-308. https://doi.org/10.1016/S0034-4257(98)00091-1
  30. Osunkoya, O.O., K. Omar-Ali, N. Amit, J. Dayan, D.S. Daud, T.K. Sheng, 2007. Comparative heightcrown allometry and mechanical design in 22 tree species of Kuala Belalong rainforest, Brunei, Borneo, American Journal of Botany, 94(12): 1951-1962. https://doi.org/10.3732/ajb.94.12.1951
  31. Pan, Y., R.A. Birdsey, J. Fang, R. Houghton, P.E. Kauppi, W.A. Kurz, O.L. Phillips, A. Shvidenko, S.L. Lewis, and J.G. Canadell, 2011. A large and persistent carbon sink in the world's forests, Science, 333(6045): 988-993. https://doi.org/10.1126/science.1201609
  32. Parker, R.C. and P.A. Glass, 2004. High-Versus Low-Density LiDAR in a Double-Sample Forest Inventory, Southern Journal of Applied Forestry, 28: 205-210.
  33. Park, T., W.K. Lee, J.Y. Lee, W.H. Byun, D.A. Kwak, G. Cui, M.I. Kim, R. Jung, E. Pujiono, S. Oh, J. Byun, K. Nam, H.K. Cho, J.S. Lee, D.J. Chung, and S.H. Kim, 2012. Forest plot volume estimation using National Forest Inventory, Forest Type Map and Airborne LiDAR data, Forest Science and Technology, 8(2): 89-98. https://doi.org/10.1080/21580103.2012.673749
  34. Popescu, S.C., K. Zhao, A. Neuenschwander, and C. Lin, 2011. Satellite LiDAR vs. small footprint airborne LiDAR: Comparing the accuracy of aboveground biomass estimates and forest structure metrics at footprint level, Remote Sensing of Environment, 115(11): 2786-2797. https://doi.org/10.1016/j.rse.2011.01.026
  35. Rutishauser, E., F. Noor'an, Y. Laumonier, J. Halperin, K. Hergoualch, and L. Verchot, 2013. Generic allometric models including height best estimate forest biomass and carbon stocks in Indonesia, Forest Ecology and Management, 307: 219-225. https://doi.org/10.1016/j.foreco.2013.07.013
  36. Sader, S.A., T.A. Stone, and A.T. Joyce, 1990. Remote sensing of tropical forests: an overview of research and applications using non-photographic sensors, Photogrammetric Engineering and Remote Sensing, 56(10): 1343-1351.
  37. Saner, P., Y.Y. Loh, R.C. Ong, and A. Hector, 2012. Carbon stocks and fluxes in tropical lowland dipterocarp rainforests in Sabah, Malaysian Borneo, PLOS one, 7(1): 29642. https://doi.org/10.1371/journal.pone.0029642
  38. Smrecek, R. and Z. Danihelova, 2013. Forest stand height determination from low point density airborne laser scanning data in Roznava Forest enterprise zone (Slovakia), iForest-Biogeosciences and Forestry, 6: 48-54. https://doi.org/10.3832/ifor0767-006

Cited by

  1. Estimation of Voxel-Based Above-Ground Biomass Using Airborne LiDAR Data in an Intact Tropical Rain Forest, Brunei vol.7, pp.12, 2016, https://doi.org/10.3390/f7110259