• Title/Summary/Keyword: tree based learning

Search Result 435, Processing Time 0.038 seconds

A Study on Developing a Predictive Model for Digital Quality Management Based on Decision Tree (의사결정나무 기반 디지털품질경영 예측 모형 개발 연구)

  • Byung-Hoon Park;Ho-Jun Song;Wan-Seon Shin
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.47 no.3
    • /
    • pp.51-67
    • /
    • 2024
  • This study aims to develop a comprehensive predictive model for Digital Quality Management (DQM) and to analyze the impact of various quality activities on different levels of DQM. By employing the Classification And Regression Tree (CART) methodology, we are able to present predictive scenarios that elucidate how varying quantitative levels of quality activities influence the five major categories of DQM. The findings reveal that the operation level of quality circles and the promotion level of suggestion systems are pivotal in enhancing DQM levels. Furthermore, the study emphasizes that an effective reward system is crucial to maximizing the effectiveness of these quality activities. Through a quantitative approach, this study demonstrates that for ventures and small-medium enterprises, expanding suggestion systems and implementing robust reward mechanisms can significantly improve DQM levels, particularly when the operation of quality circles is challenging. The research provides valuable insights, indicating that even in the absence of fully operational quality circles, other mechanisms can still drive substantial improvements in DQM. These results are particularly relevant in the context of digital transformation, offering practical guidelines for enterprises to establish and refine their quality management strategies. By focusing on suggestion systems and rewards, businesses can effectively navigate the complexities of digital transformation and achieve higher levels of quality management.

Analysis on Proportional Daily Weight Increase of Swine Using Machine Learning (기계학습을 이용한 비육돈의 비율일당증체분석)

  • Lee, Woongsup;Hwang, Sewoon;Kim, Jonghyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.183-185
    • /
    • 2015
  • Recently, big data analysis based on machine learning has gained popularity and many machine learning techniques have been applied to the field of agriculture. By using machine learning technique to analyze huge number of samples of biological and environmental data, new observations can be found. In this research, we consider the estimation of proportional daily weight increase (PDWI) based on measurement data from experimental swine farm. In order to derive the exact formulation for PDWI estimation, we have used measured value of mean, daily maximum, daily minimum of temperature, humidity, CO2, wind speed and measured PDWI values. Based on collected data, we have derived equation for PDWI estimation using tree-based algorithm. In the derived formulation, we have found that the daily average temperature is the most dominant factor that affects PDWI. Our results can be applied to pig farms to estimate the PDWI of swine.

  • PDF

Vacant House Prediction and Important Features Exploration through Artificial Intelligence: In Case of Gunsan (인공지능 기반 빈집 추정 및 주요 특성 분석)

  • Lim, Gyoo Gun;Noh, Jong Hwa;Lee, Hyun Tae;Ahn, Jae Ik
    • Journal of Information Technology Services
    • /
    • v.21 no.3
    • /
    • pp.63-72
    • /
    • 2022
  • The extinction crisis of local cities, caused by a population density increase phenomenon in capital regions, directly causes the increase of vacant houses in local cities. According to population and housing census, Gunsan-si has continuously shown increasing trend of vacant houses during 2015 to 2019. In particular, since Gunsan-si is the city which suffers from doughnut effect and industrial decline, problems regrading to vacant house seems to exacerbate. This study aims to provide a foundation of a system which can predict and deal with the building that has high risk of becoming vacant house through implementing a data driven vacant house prediction machine learning model. Methodologically, this study analyzes three types of machine learning model by differing the data components. First model is trained based on building register, individual declared land value, house price and socioeconomic data and second model is trained with the same data as first model but with additional POI(Point of Interest) data. Finally, third model is trained with same data as the second model but with excluding water usage and electricity usage data. As a result, second model shows the best performance based on F1-score. Random Forest, Gradient Boosting Machine, XGBoost and LightGBM which are tree ensemble series, show the best performance as a whole. Additionally, the complexity of the model can be reduced through eliminating independent variables that have correlation coefficient between the variables and vacant house status lower than the 0.1 based on absolute value. Finally, this study suggests XGBoost and LightGBM based machine learning model, which can handle missing values, as final vacant house prediction model.

Evolutionary Learning of Sigma-Pi Neural Trees and Its Application to classification and Prediction (시그마파이 신경 트리의 진화적 학습 및 이의 분류 예측에의 응용)

  • 장병탁
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.13-21
    • /
    • 1996
  • The necessity and usefulness of higher-order neural networks have been well-known since early days of neurocomputing. However the explosive number of terms has hampered the design and training of such networks. In this paper we present an evolutionary learning method for efficiently constructing problem-specific higher-order neural models. The crux of the method is the neural tree representation employing both sigma and pi units, in combination with the use of an MDL-based fitness function for learning minimal models. We provide experimental results in classification and prediction problems which demonstrate the effectiveness of the method. I. Introduction topology employs one hidden layer with full connectivity between neighboring layers. This structure has One of the most popular neural network models been very successful for many applications. However, used for supervised learning applications has been the they have some weaknesses. For instance, the fully mutilayer feedforward network. A commonly adopted connected structure is not necessarily a good topology unless the task contains a good predictor for the full *d*dWs %BH%W* input space.

  • PDF

Interworking technology of neural network and data among deep learning frameworks

  • Park, Jaebok;Yoo, Seungmok;Yoon, Seokjin;Lee, Kyunghee;Cho, Changsik
    • ETRI Journal
    • /
    • v.41 no.6
    • /
    • pp.760-770
    • /
    • 2019
  • Based on the growing demand for neural network technologies, various neural network inference engines are being developed. However, each inference engine has its own neural network storage format. There is a growing demand for standardization to solve this problem. This study presents interworking techniques for ensuring the compatibility of neural networks and data among the various deep learning frameworks. The proposed technique standardizes the graphic expression grammar and learning data storage format using the Neural Network Exchange Format (NNEF) of Khronos. The proposed converter includes a lexical, syntax, and parser. This NNEF parser converts neural network information into a parsing tree and quantizes data. To validate the proposed system, we verified that MNIST is immediately executed by importing AlexNet's neural network and learned data. Therefore, this study contributes an efficient design technique for a converter that can execute a neural network and learned data in various frameworks regardless of the storage format of each framework.

Programming Learning Supporting System based on Error Feedback for Novices (에러 피드백 기반의 초보자를 위한 프로그래밍 학습 지원 시스템)

  • Jang, HyeSun;Choi, SookKyoung;Jun, SooJin;Yeom, YongChul;Lee, WonGyu
    • The Journal of Korean Association of Computer Education
    • /
    • v.10 no.6
    • /
    • pp.1-10
    • /
    • 2007
  • Programming is emphasized in information(computer science) education course domestically and in foreign countries, and novices are given ample opportunities to experience programming. Programming error is a critical factor which makes it difficult to learn programming for novices. However, if they are given appropriate feedback, it can have positive influence on programming learning. In this paper, we design programming learning supporting system for novice through error feedback and provide some implementations for EPL 'Dolittle'. This system has four features as highlighting, guiding messages, object tree, and step-execution.

  • PDF

Development of a Prediction Model and Correlation Analysis of Weather-induced Flight Delay at Jeju International Airport Using Machine Learning Techniques (머신러닝(Machine Learning) 기법을 활용한 제주국제공항의 운항 지연과의 상관관계 분석 및 지연 여부 예측모형 개발 - 기상을 중심으로 -)

  • Lee, Choongsub;Paing, Zin Min;Yeo, Hyemin;Kim, Dongsin;Baik, Hojong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.4
    • /
    • pp.1-20
    • /
    • 2021
  • Due to the recent rapid increase in passenger and cargo air transport demand, the capacity of Jeju International Airport has been approaching its limit. Even though in COVID-19 crisis which has started from Nov 2019, Jeju International Airport still suffers from strong demand in terms of air passenger and cargo transportation. However, it is an undeniable fact that the delay has also increased in Jeju International Airport. In this study, we analyze the correlation between weather and delayed departure operation based on both datum collected from the historical airline operation information and aviation weather statistics of Jeju International Airport. Adopting machine learning techniques, we then analyze weather condition Jeju International Airport and construct a delay prediction model. The model presented in this study is expected to play a useful role to predict aircraft departure delay and contribute to enhance aircraft operation efficiency and punctuality in the Jeju International Airport.

Identification of shear transfer mechanisms in RC beams by using machine-learning technique

  • Zhang, Wei;Lee, Deuckhang;Ju, Hyunjin;Wang, Lei
    • Computers and Concrete
    • /
    • v.30 no.1
    • /
    • pp.43-74
    • /
    • 2022
  • Machine learning technique is recently opening new opportunities to identify the complex shear transfer mechanisms of reinforced concrete (RC) beam members. This study employed 1224 shear test specimens to train decision tree-based machine learning (ML) programs, by which strong correlations between shear capacity of RC beams and key input parameters were affirmed. In addition, shear contributions of concrete and shear reinforcement (the so-called Vc and Vs) were identified by establishing three independent ML models trained under different strategies with various combinations of datasets. Detailed parametric studies were then conducted by utilizing the well-trained ML models. It appeared that the presence of shear reinforcement can make the predicted shear contribution from concrete in RC beams larger than the pure shear contribution of concrete due to the intervention effect between shear reinforcement and concrete. On the other hand, the size effect also brought a significant impact on the shear contribution of concrete (Vc), whereas, the addition of shear reinforcements can effectively mitigate the size effect. It was also found that concrete tends to be the primary source of shear resistance when shear span-depth ratio a/d<1.0 while shear reinforcements become the primary source of shear resistance when a/d>2.0.

Machine Learning Based BLE Indoor Positioning Performance Improvement (머신러닝 기반 BLE 실내측위 성능 개선)

  • Moon, Joon;Pak, Sang-Hyon;Hwang, Jae-Jeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.467-468
    • /
    • 2021
  • In order to improve the performance of the indoor positioning system using BLE beacons, a receiver that measures the angle of arrival among the direction finding technologies supported by BLE5.1 was manufactured and analyzed by machine learning to measure the optimal position. For the creation and testing of machine learning models, k-nearest neighbor classification and regression, logistic regression, support vector machines, decision tree artificial neural networks, and deep neural networks were used to learn and test. As a result, when the test set 4 produced in the study was used, the accuracy was up to 99%.

  • PDF

Prediction of Larix kaempferi Stand Growth in Gangwon, Korea, Using Machine Learning Algorithms

  • Hyo-Bin Ji;Jin-Woo Park;Jung-Kee Choi
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.4
    • /
    • pp.195-202
    • /
    • 2023
  • In this study, we sought to compare and evaluate the accuracy and predictive performance of machine learning algorithms for estimating the growth of individual Larix kaempferi trees in Gangwon Province, Korea. We employed linear regression, random forest, XGBoost, and LightGBM algorithms to predict tree growth using monitoring data organized based on different thinning intensities. Furthermore, we compared and evaluated the goodness-of-fit of these models using metrics such as the coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE). The results revealed that XGBoost provided the highest goodness-of-fit, with an R2 value of 0.62 across all thinning intensities, while also yielding the lowest values for MAE and RMSE, thereby indicating the best model fit. When predicting the growth volume of individual trees after 3 years using the XGBoost model, the agreement was exceptionally high, reaching approximately 97% for all stand sites in accordance with the different thinning intensities. Notably, in non-thinned plots, the predicted volumes were approximately 2.1 m3 lower than the actual volumes; however, the agreement remained highly accurate at approximately 99.5%. These findings will contribute to the development of growth prediction models for individual trees using machine learning algorithms.