Evolutionary Learning of Sigma-Pi Neural Trees and
Its Application to Classification and Prediction
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ABSTRACT

The necessity and usefulness of higher-order neural networks have been well-known since early days of
neurocomputing. However the explosive number of terms has hampered the design and training of such networks.
In this paper we present an evolutionary learning method for efficiently constructing problem-specific higher-order
neural models. The crux of the method is the neural tree representation employing both sigma and pi units, in com-
bination with the use of an MDL-based fitness function for learning minimal models. We provide experimental

results in classification and prediction problems which demonstrate the effectiveness of the method.
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I. introduction topology employs one hidden layer with full connec-

tivity between neighboring layers. This structure has

One of the most popular neural network models been very successful for many applications. However,
used for supervised learning applications has been the they have some weaknesses. For instance, the fully
mutilayer feedforward network. A commonly adopted connected structure is not necessarily a good topology

unless the task contains a good predictor for the full
AFURE AFEH T input space.
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Most network architectures consist of neural units
which compute the weighted sum of inputs. These
summation units are especially appropriate to
approximating additive functions, since they employ
linear combinations of inputs. However, the multilayer
perceptrons cannot approximate efficiently if there
are high order interactions between the inputs. Adding
additional hidden layers may help to extend the
representational capacity of the network, but the
training becomes more difficult. A solution may be to
use higher-order units. The necessity and usefulness of
higher-order neural networks have been well-known.
However the explosive number of terms hampers the
design and training of such networks.

In this paper we present a method for the construction
of higher-order neural networks with partial connectivity.
The method uses a genetic algorithm. Genetic algorithms
are search methods based on a population of individuals,
each of which represents a search point in the space
of potential solutions to a given problem [6]. The
population is arbitrarily initialized, and it evolves
toward better and better regions of the search space
by means of randomized processes of selection,
mutation and recombination. The environment delivers
the fitness value of the search points, and the selection
process favors those individuals of higher fitness to
reproduce more often than those of lower fitness. The
recombination mechanism allows the mixing of par-
ental information while passing it to their descendants,
and mutation introduces innovation into the population.

The presented method uses a tree representation of
the network, called neural trees, on which genetic
operators are applied to modify and find fitter
architectures. Another feature of the method is the
use of complexity factor in its fitness function. It
makes an optimal trade-off between the error fitting
ability and the parsimony of the network. In section 2
we describe this representation scheme in more detail.
Section 3 describes the evolutionary algorithm for
learning problem-specific neural trees. Section 4 analyzes

the complexity of building polynomial networks using
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neural trees to motivate the genetic

sigma-pi
approach. Section 5 shows the experimental results.

Conclusions are provided in Section 6.

Il. Genetic Algorithms for Neural
Networks

Various schemes for combining genetic algorithms
and neural networks have been proposed and tested
in recent years {13, 15]. One possibility is to use gen-
etic algorithms for selecting features of training
patterns. This combination has already achieved some
success on real world tasks. A second possibility is to
use evolutionary algorithms to determin neural net-
work weights. In weight optimization, the set of
weights is represented as a chromosome and a genetic
search is applied on the encoded representation to
find a set of weights that best fits the training data.
Some encouraging results have been reported which
are comparable with conventional learning algorithms
{10]. Where gradient or error information is not avail-
able, genetic algorithms may be a promising training
method. A third possibility of combination is to use
genetic search techniques to optimize the network
topology. Here the topology of the networks is
encoded as a chromosome and some genetic operators
are applied to find an architecture which best fits the
specified task according to some explicit design cri-
teria. Many methods have been proposed for evolving
network topologies.

A general way of genetically evolving neural
networks was suggested by M hlenbein and Kindermann
in [12]. Recent works, however, have focused on using
genetic algorithms separately in each optimization
problem, mainly in optimizing the network topology.
Miller et al. [8] has described representation schemes
in which the anatomical properties of the network
structure are encoded as bit-strings. Similar represen-
tation has also been used by Whitley et al. [15] to
prune unnecessary connections. All these methods use

the backpropagation algorithm, a gradient-descent
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method, to train the weights of the network.

We represent a feedforward network as a set of 7
trees, each corresponding to one output unit. For
example, the genotype of a feedforward network
consisting of #=6 inputs and m=1 output unit is
shown in Figure 1. In this tree representation, what
we call neural tree, a node consists of one or more
elements. For hidden and output units, each node
contains an activation function type U, a threshold
value 6;, and an arbitrary number of weight values w;;.
The node may point recursively to other hidden units
U; or an external input unit x, 2 €{1,--,n}.

This encoding scheme can represent any feedforward
network with local receptive fields and direct connections
between non-neighboring layers (see [16] for more
details) and thus extends the tree representation used
in [7].

Fig. 1 An example of sigmpa-pi neural tree.

This is contrasted with the more commonly used
perceptron architecture of fully connected feedforward

networks.
. Evolving Sigma-Pi Neural Trees

The neural tree representation allows any type of
activation functions to be defined. In particular, we
may use pi units as well as the usual sigma units.
While a sigma unit calculates a sum of weighted

inputs,
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a pi-unit builds a {\ it product} of weighted inputs:
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Here w;; is the connection weight from unit 7 to unit
i and R(7) denotes the receptive field of unit 7. By
using pi units we can, for example, directly build %

th-order terms
A
T®=f, ( II wijj) 3
j=1

which in conventional neural networks require a num-
ber of layers consisting of summation units. These
terms can be again used as basis functions in the

upper layers:
Ju
vi=Ji (% Wix f3 (,I:In wijj)) @

For the construction of problem-specific neural
models we maintain a population A4 consisting of M
individuals A4; of variable size. Each individual is a
neural network represented as a set of sigma-pi neural
trees. The algorithm is summarized in Figure 2:

The initial population A(0) is generated with M
neural networks created at random. The random
initialization includes the type and receptive field of
units, the depth of the network, and the values of
weights. Then, the fitness values (defined below) of
the individual networks are evaluated using a training
set of size N. According to their fitness value, the best
t% members of gth generation are selected into the
mating pool B(g). The (g +1)th generation of size M
is produced by applying crossover and mutation
operators to the parent networks in the mating pool
B(g). New populations are generated until the vari-
ance of fitness values falls below a specified limit or
the generation number reaches gpx.

The crossover operator selects two parents, B; and

B; and exchanges their subtrees to generate two off-
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spring B; and B7. This is the way how the size, depth
and receptive field shape of the network architecture
is adapted. The weights are adapted by repeatedly
applying a mutation operator to each individual. The
mutation operator also changes the index for the
input units and the neuron type. For instance, a
sigma unit is mutated to a pi unit and vice versa. This
flexibility gives the chance of evolving conventional
networks as well as networks consisting of any
combinations of sigma and pi units.

The fitness of a network is defined as
F=BFg+aFc &)

The Fj term expresses the accuracy penalty caused by
the error for the training set. As usual the total sum

of errors has been used:

1. Generate initial population A4 (0) of M networks at
random. Set current generation g<0.

2. Evaluate fitness values F;(g) of networks using the
training set of N examples.

3. If the termination condition is satisfied, then return
the population ; otherwise continue with step 4.

4. Select upper tM networks of gth population into
the mating pool B(g).

5. Each network in B(g) undergoes a local hillclimbing,
resulting in revised mating pool B(g).

6. Create (g +1)th population A (£ +1) of size M by
applying genetic operators to randomly chosen
parent networks in B(g).

7. Replace the worst fit network in 4 (£ +1) by the
best in 4 (2).

8. Set g« g +1 and return to step 2.

Fig. 2 Summary of the procedure for evolving problem-
specific sigma-pi neural tree.
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The F. term in the fitness function expresses the com-
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Fig. 3 Grammar for generating the sigma-pi neural trees.

plexity penalty of the network.

The complexity of the network is expressed as the
sum of the numbers of weights W (4), units U (4),
and layers L(A), i.e.

Fe=W () +U )+ L(4) @)

This definition prefers smaller (and shallow) networks
to larger (and deep) structures and in this way
implements the principle of minimum description
length (MDL) [17, 19]. In the experiments we used
the following values for parameters § and a:

1 1

= 8
v ®

where m is the number of outputs. Notice that the
complexity term Fc is divided by the number of train-
ing examples N multiplied by the possible maximum
network size Cy,,. This ensures a small network
survives selection only if it achieves a competitive per-
formance to a large network. Otherwise, the evolution
may not lead to a desired accuracy by preferring
smaller networks which lack the capacity to learn the

training set.
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V. Theoretical Analysis

A higher-order neuron of order & has an input-out-

put relation given by

y=ru),
u=w,+ L w x;

B
'*‘Z Z wfllgjx,-,xi,-i---- (9)

+ Z. Z. Z w}f_{.i‘xﬁ .,
I iy
where all indices i,,...,Z,, in w,-f’_'f?,—_ are assumed to take
different values satisfying 7, (7, ( --- {7,
Since the k-th order term consists of a linear
weighted sum over k-th order products of inputs, we

can rewrite it using pi-units:

" (3]
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P(k)z‘pi(l.k)iz.---.ﬂzg (I—[ vixi) (1])
assuming
gw)=uand v;=1 12)

The higher-order terms can be again used as building
blocks which are able to capture a high-order corre-
lational structure of the data.

In particular, by building a sigma unit which has as
input various higher-order terms, we can construct a
higher-order network of sigma-pi units:

3:=fiw) = fi( Lw,T®) (13)
k
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Fig. 4 An order 4 neuron realized as a sigma-pi neural tree.

The problem in using higher-order networks is that
the number of terms explodes with the problem size;
the number of parameters necessary for specifying an
order k neuron is

k
147 =§::0 nCi (14)

i
because w,, have # Cm components. Here # is the
total number of inputs and #» Cm are the binomial
coefficients. As an example, an order 4 neuron has 24
=16 parameters as shown in Figure 4.

The experimental results in the following section
shows how the genetic search “intelligently” discovers
and combines useful terms and eliminates non-essen-
tial terms, without exhaustively searching through the

entire space.
V. Experimental Results

5.1 Benchmark Tests

The effectiveness of the method was studied on
parity problems with input size =2, 4, 6, 8. The
parity problem is difficult to solve by perceptrons
since the sigma units can not effectively represent the
higher order interactions necessary for solving the
problem. We attempted to solve the problem using
both sigma and pi units, i.e. let the genetic algorithm
find a suitable architecture starting with a population
of structures initialized with 50% sigma units and

50% pi units.
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As generation goes on, sigma units died out and
finally most of the best solutions consisted of pi units.
This indicates that the method can evolve problem-
specific neuron types and topologies starting from
random structures. This fact was confirmed by
additional control experiments in which only sigma
units were allowed. As results in Tables 1 and 2 show,
if pi units (P) are used, the performance in accuracy
as well as in complexity reduction was consistently
improved as to the case when sigma units (S) alone
are used. Throughout all the experiments, training
data consisted of 2” examples for problem size 7. For
each #», the population size was M = 100%n/2 and the

maximum generation was set g, = 107,

Tabie 1. Comparison of network size

7 type units weights
28 4004 129+ 0.9
s/p 2201 6.5+0.2
48 17.9 £ 0.7 550+ 1.0
S/P 3.6+04 148 £ 1.7
6S 30.2+3.5 1614 + 179
S/p 89+0.5 40.2£22
88 656+ 54 414.1 £ 31.5
S/p 21,0 £ 09 106.8 £2.2

Table 2. Performance comparison

»n type accuracy generations
28 950+ 09 125+ 0.8
S/p 100.0 £ 0.0 29+0.2
48 819+ 0.1 40.0 £ 0.0
S/p 100.0 £ 0.0 85+1.3
68 89.5+ 34 462+ 1.1
S/p 98.4 £ 0.8 358+ 1.5
88 86.4 + 2.1 63.4+3.0
s/p 98.1+1.8 562+ 42

5.2 Water Poliution Forecasting
The task involves an environmental system in the

Sangamon River, Illinois. Our objective is to predict
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nitrate levels a week ahead in the watersheds of the
river from the previous values. The predicted values
can be used for monitoring the progress of water pol-
lution. The original study in the literature also aims
at giving some indication of the biochemical and
physical relationships among the variables and of the
controllability of the system.

The training data is based on the nitrate-nitrogen
levels during the period from January 1, 1970, to
December 31, 1971. The sampling interval is one
week. The training set is generated from this series
using a time lag of four. The initial population was
created by randomly generating neural trees with a
branching factor up to four and maximum depth of
four also. 50% of the units were randomly chosen as
sigma units and the rest as pi units. During evolution,
however, sigma units usually survived more often
than the pi units did. Using the weight interval of
[—10, +10], the best solutions after 300 generations
contained on average 10 hidden units in three layers.

The mean square error for the training data was
0104. To test the predictive accuracy of the evolved
models, unseen data for the same watershed for 1972
was used. The measured and predicted outputs for
this test data are plotted in Figures 5 and 6. As can
be seen in the figure, the nitrate levels for the follow-

ing week was predicted relatively well, considering the

100
————em measured

.80 4

360 4

nitrate-nitrogen ievels
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00

A EEEEEE]
weoks (1972)

Fig- 5 The test data for the water pollution problem.



Evolutionary Learning of Sigma-Pi Neural Trees and Its Application to Classification and Prediction

predicted

c.oc,
g 8 8
‘.

nitrate-niticgen levels

8

200

T
8

weoks (1972}

Fig. 6 One-step ahead prediction for the water pollution
problem.

sparseness of the training data. This result is compar-
able to that obtained by the well-engineered GMDH
algorithm [3, 18].

5.3 Laser Intensity Prediction

Evolutionary learning of sigma-pi trees has also
been successfully applied to a real-world time-series
prediction problem. The data came from a far-infra-
red laser [14]. The training examples were formed
from the time series {x;} by specifying groups with
respect to a time index f. The input pattern was
assignied (x,_3, X;-3, %), the desired output was x;.

The next 500 steps are shown in Figure 7 and its

D % W A0 20 N0 M 0 0 K0

t

Fig. 7 The test data for the laser intensity
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one-step ahead prediction result is depicted in Figure
8. It is remarkable that though some peaks of the
time series were not fit completely during the learning
phase, the generalization performance on the unseen
time series is relatively good. This is the desired effect
when using the complexity penalty during fitness
evaluation.

W 1 0 W W0 I 40 40 S0

!
Fig. 8 One-step ahead perdiction performance for the laser
data.

VI. Conclusion

From the engineering point of view, various
schemes for combining genetic algorithms and neural
networks have been proposed and tested in recent
years, including preprocessing of data for neural net-
work application, determination of neural network
weights, and optimization of the network topology.

In this paper we have presented an evolutionary
method for constructing higher-order neural networks.
The method uses a tree encoding scheme in which the
node type, weight, size and topology of the network
are dynamically adapted by genetic operators. We
demonstrate the effectiveness of the genetic algorithm
on the synthesis of sigma-pi neural networks which
are useful for building higher-order terms. In particu-
lar, we have shown that the method is effective for

learning to solve classification and prediction problems.
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In contrast to conventional learning algorithms for
neural networks, the presented method makes rela-
tively few assumptions on the architecture space in
which the search is performed. Thus it may be used
to design and train other types of neural network
models. The potential for evolving novel neural
networks that are customized for specific applications
is one of the most interesting properties of evolution-
ary learning algorithms.
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