• 제목/요약/키워드: traveling salesman

검색결과 185건 처리시간 0.022초

3차원 격자지도 기반 생존성 극대화를 위한 다수 무인 항공기 임무경로 계획 (Mission Path Planning to Maximize Survivability for Multiple Unmanned Aerial Vehicles based on 3-dimensional Grid Map)

  • 김기태;전건욱
    • 산업공학
    • /
    • 제25권3호
    • /
    • pp.365-375
    • /
    • 2012
  • An Unmanned Aerial Vehicle (UAV) is a powered pilotless aircraft, which is controlled remotely or autonomously. UAVs are an attractive alternative for many scientific and military organizations. UAVs can perform operations that are considered to be risky or uninhabitable for humans. UAVs are currently employed in many military missions and a number of civilian applications. For accomplishing the UAV's missions, guarantee of survivability should be preceded. The main objective of this study is to suggest a mathematical programming model and a $A^*PS$_PGA (A-star with Post Smoothing_Parallel Genetic Algorithm) for Multiple UAVs's path planning to maximize survivability. A mathematical programming model is composed by using MRPP (Most Reliable Path Problem) and MTSP (Multiple Traveling Salesman Problem). After transforming MRPP into Shortest Path Problem (SPP),$A^*PS$_PGA applies a path planning for multiple UAVs.

개미 모델 성능에서 다중 에이전트 상호작용 전략의 효과 (The Effect of Multiagent Interaction Strategy on the Performance of Ant Model)

  • 이승관
    • 한국콘텐츠학회논문지
    • /
    • 제5권3호
    • /
    • pp.193-199
    • /
    • 2005
  • 휴리스틱 알고리즘 연구에 있어서 중요한 분야 중 하나가 강화와 다양화의 조화를 맞추는 문제이다. 개미 집단 시스템은 최근에 제안된 조합 최적화문제를 해결하기 위한 메타 휴리스틱 기법으로, 그리디 탐색과 긍정적 보상에 의한 접근법으로 순회 판매원 문제를 풀기 위해 처음으로 제안되었다. 본 논문에서는 기존 개미집단 시스템의 성능을 향상시키기 위해 강화 전략과 다양화 전략으로 나누어진 엘리트 전략을 통해 집단간 긍정적 부정적 상호작용을 수행하는 다중 집단 개미 모델을 제안한다. 그리고, 이 제안된 엘리트 전략에 의한 다중 집단 상호작용 개미 모델을 순회판매원문제에 적용해 보고 그 성능에 대해 기존 개미집단 시스템과 비교한다.

  • PDF

Recursive compensation algorithm application to the optimal edge selection

  • Chung, C.H.;Lee, K.S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.79-84
    • /
    • 1992
  • Path planning is an important task for optimal motion of a robot in structured or unstructured environment. The goal of this paper is to plan the optimal collision-free path in 3D, when a robot is navigated to pick up some tools or to repair some parts from various locations. To accomplish the goal, the Path Coordinator is proposed to have the capabilities of an obstacle avoidance strategy and a traveling salesman problem strategy (TSP). The obstacle avoidance strategy is to plan the shortest collision-free path between each pair of n locations in 2D or in 3D. The TSP strategy is to compute a minimal system cost of a tour that is defined as a closed path navigating each location exactly once. The TSP strategy can be implemented by the Hopfield Network. The obstacle avoidance strategy in 2D can be implemented by the VGraph Algorithm. However, the VGraph Algorithm is not useful in 3D, because it can't compute the global optimality in 3D. Thus, the Path Coordinator is used to solve this problem, having the capabilities of selecting the optimal edges by the modified Genetic Algorithm and computing the optimal nodes along the optimal edges by the Recursive Compensation Algorithm.

  • PDF

오프라인 프로그래밍에서 유전자 알고리즘을 이용한 로봇의 경로 최적화 (Path Optimization Using an Genetic Algorithm for Robots in Off-Line Programming)

  • 강성균;손권;최혁진
    • 한국정밀공학회지
    • /
    • 제19권10호
    • /
    • pp.66-76
    • /
    • 2002
  • Automated welding and soldering are an important manufacturing issue in order to lower the cost, increase the quality, and avoid labor problems. An off-line programming, OLP, is one of the powerful methods to solve this kind of diversity problem. Unless an OLP system is ready for the path optimization in welding and soldering, the waste of time and cost is unavoidable due to inefficient paths in welding and soldering processes. Therefore, this study attempts to obtain path optimization using a genetic algorithm based on artificial intelligences. The problem of welding path optimization is defined as a conventional TSP (traveling salesman problem), but still paths have to go through welding lines. An improved genetic algorithm was suggested and the problem was formulated as a TSP problem considering the both end points of each welding line read from database files, and then the transit problem of welding line was solved using the improved suggested genetic algorithm.

대칭 순회 판매원문제를 위한 Subtour 보존 교차 연산자 (Subtour Preservation Crossover Operator for the Symmetric TSP)

  • 석상문;이홍걸;변성철
    • 대한산업공학회지
    • /
    • 제33권2호
    • /
    • pp.201-212
    • /
    • 2007
  • Genetic algorithms (GAs) are very useful methods for global search and have been applied to various optimization problems. They have two kinds of important search mechanisms, crossover and mutation. Because the performance of GAs depends on these operators, a large number of operators have been developed for improving the performance of GAs. Especially, many researchers have been more interested in a crossover operator than a mutation operator. The reason is that a crossover operator is a main search operator in GAs and it has a more effect on the search performance. So, we also focus on a crossover operator. In this paper we first investigate the drawback of various crossovers, especially subtour-based crossovers and then introduce a new crossover operator to avoid such drawback and to increase efficiency. Also we compare it with several crossover operators for symmetric traveling salesman problem (STSP) for showing the performance of the proposed crossover. Finally, we introduce an efficient simple hybrid genetic algorithm using the proposed operator and then the quality and efficiency of the obtained results are discussed.

ILL-VERSUS WELL-POSED SINGULAR LINEAR SYSTEMS: SCOPE OF RANDOMIZED ALGORITHMS

  • Sen, S.K.;Agarwal, Ravi P.;Shaykhian, Gholam Ali
    • Journal of applied mathematics & informatics
    • /
    • 제27권3_4호
    • /
    • pp.621-638
    • /
    • 2009
  • The linear system Ax = b will have (i) no solution, (ii) only one non-trivial (trivial) solution, or (iii) infinity of solutions. Our focus will be on cases (ii) and (iii). The mathematical models of many real-world problems give rise to (a) ill-conditioned linear systems, (b) singular linear systems (A is singular with all its linearly independent rows are sufficiently linearly independent), or (c) ill-conditioned singular linear systems (A is singular with some or all of its strictly linearly independent rows are near-linearly dependent). This article highlights the scope and need of a randomized algorithm for ill-conditioned/singular systems when a reasonably narrow domain of a solution vector is specified. Further, it stresses that with the increasing computing power, the importance of randomized algorithms is also increasing. It also points out that, for many optimization linear/nonlinear problems, randomized algorithms are increasingly dominating the deterministic approaches and, for some problems such as the traveling salesman problem, randomized algorithms are the only alternatives.

  • PDF

TSP를 위한 마스터/슬레이브 모델을 이용한 분산유전 알고리즘 (Distributed Genetic Algorithm using aster/slave model for the TSP)

  • Jung-Sook Kim
    • 한국컴퓨터산업학회논문지
    • /
    • 제3권2호
    • /
    • pp.185-190
    • /
    • 2002
  • 외판원 문제는 NP-완전 문제 중의 하나로, 외판원 문제에 대한 최적해를 구하거나 근사해를 구하는 다양한 방법들이 개발되고 있다. 본 논문에서는 마스터/슬래이브 모델을 이용하여 외판원 문제를 해결하는 효율적인 분산 유전 알고리즘을 개발하였다. 특히 다중 후보해를 가진 분산 유전 알고리즘을 수행할 때, 고려해야 할 가장 중요한 요소는 후보해들 간의 개체들을 어떤 노드의 후보해 개체와 교환할 것인가와 어떤 개체들을 선택해서, 얼마만큼의 개체를 이동시킬 것인가가 중요하게 고려되어야 한다. 따라서 본 논문에서는 교환해야 할 개체의 크기를 임의로 생성하여 동적으로 변경하면서 교환하는 방법을 개발하였고, 또한 개체들이 교환되어질 슬래이브들의 위치를 결정하는 이동 정책을 개발하고 실험하였다.

  • PDF

검사지연시간을 고려한 SMT 검사기의 통합적 경로 계획 알고리즘 (Unified Approach to Path Planning Algorithm for SMT Inspection Machines Considering Inspection Delay Time)

  • 이철희;박태형
    • 제어로봇시스템학회논문지
    • /
    • 제21권8호
    • /
    • pp.788-793
    • /
    • 2015
  • This paper proposes a path planning algorithm to reduce the inspection time of AOI (Automatic Optical Inspection) machines for SMT (Surface Mount Technology) in-line system. Since the field-of-view of the camera attached at the machine is much less than the entire inspection region of board, the inspection region should be clustered to many groups. The image acquisition time depends on the number of groups, and camera moving time depends on the sequence of visiting the groups. The acquired image is processed while the camera moves to the next position, but it may be delayed if the group includes many components to be inspected. The inspection delay has influence on the overall job time of the machine. In this paper, we newly considers the inspection delay time for path planning of the inspection machine. The unified approach using genetic algorithm is applied to generates the groups and visiting sequence simultaneously. The chromosome, crossover operator, and mutation operator is proposed to develop the genetic algorithm. The experimental results are presented to verify the usefulness of the proposed method.

Minimum time path planning of robotic manipulator in drilling/spot welding tasks

  • Zhang, Qiang;Zhao, Ming-Yong
    • Journal of Computational Design and Engineering
    • /
    • 제3권2호
    • /
    • pp.132-139
    • /
    • 2016
  • In this paper, a minimum time path planning strategy is proposed for multi points manufacturing problems in drilling/spot welding tasks. By optimizing the travelling schedule of the set points and the detailed transfer path between points, the minimum time manufacturing task is realized under fully utilizing the dynamic performance of robotic manipulator. According to the start-stop movement in drilling/spot welding task, the path planning problem can be converted into a traveling salesman problem (TSP) and a series of point to point minimum time transfer path planning problems. Cubic Hermite interpolation polynomial is used to parameterize the transfer path and then the path parameters are optimized to obtain minimum point to point transfer time. A new TSP with minimum time index is constructed by using point-point transfer time as the TSP parameter. The classical genetic algorithm (GA) is applied to obtain the optimal travelling schedule. Several minimum time drilling tasks of a 3-DOF robotic manipulator are used as examples to demonstrate the effectiveness of the proposed approach.

Vickrey 경매에 기초한 다중 에이전트 시스템에서의 작업 재할당 (Task Reallocation in Multi-agent Systems Based on Vickrey Auctioning)

  • 김인철
    • 정보처리학회논문지B
    • /
    • 제8B권6호
    • /
    • pp.601-608
    • /
    • 2001
  • The automated assignment of multiple tasks to executing agents is a key problem in the area of multi-agent systems. In many domains, significant savings can be achieved by reallocating tasks among agents with different costs for handling tasks. The automation of task reallocation among self-interested agents requires that the individual agents use a common negotiation protocol that prescribes how they have to interact in order to come to an agreement on "who does what". In this paper, we introduce the multi-agent Traveling Salesman Problem(TSP) as an example of task reallocation problem, and suggest the Vickery auction as an interagent negotiation protocol for solving this problem. In general, auction-based protocols show several advantageous features: they are easily implementable, they enforce an efficient assignment process, and they guarantce an agreement even in scenarios in which the agents possess only very little domain-specific Knowledge. Furthermore Vickrey auctions have the additional advantage that each interested agent bids only once and that the dominant strategy is to bid one′s true valuation. In order to apply this market-based protocol into task reallocation among self-interested agents, we define the profit of each agent, the goal of negotiation, tasks to be traded out through auctions, the bidding strategy, and the sequence of auctions. Through several experiments with sample multi-agent TSPs, we show that the task allocation can improve monotonically at each step and then finally an optimal task allocation can be found with this protocol.

  • PDF